
Math 346 Lecture #7
7.1 Contraction Mapping Principle

Definition 7.1.1. For a nonempty set X and a function f : X → X, a point x̄ ∈ X is
called a fixed point of f if f(x̄) = x̄.

Recall the One-Dimensional Brouwer Fixed Point Theorem: if f : [0, 1] → [0, 1] is con-
tinuous, then there exists x̄ ∈ [0, 1] such that f(x̄) = x̄, i.e., f has a fixed point, although
it may have more than one fixed point.

There are other kinds of continuous functions that have fixed points.

Definition 7.1.3. Let (X, ‖ · ‖) be a normed linear space, and D a nonempty subset of
X. A function f : D → D is called a contraction mapping if there exists 0 ≤ k < 1 such
that for all x, y ∈ D there holds

‖f(x)− f(y)‖ ≤ k‖x− y‖.

Remark 7.1.4. A contraction mapping f : D → D is Lipschitz continuous on D with
constant k, and hence continuous on D.

Example 7.1.6. For µ ∈ [0, 1] define T : [0, 1]→ [0, 1] by

T (x) = 4µx(1− x).

That the codomain of T is correct for each µ ∈ [0, 1] follows from the unique maximum
of T occurring at x = 1/2 when µ > 0, so that the maximum value of T is 4µ(1/4) = µ.

The function T , known as the logistic map, is an iterative model in population dynamics,
i.e., starting with a population percentage of x0, the next population percentage is x1 =
T (x0), the next is x2 = T (x1) = T 2(x0), etc.

To show that T is contraction mapping for some µ, we start with inequality

|1− x− y| ≤ 1

that holds for all x, y ∈ [0, 1]. Then

|T (x)− T (y)| = |4µx(1− x)− 4µy(1− y)|
= 4µ|x− x2 − y + y2|
= 4µ|x− y − (x2 − y2)|
= 4µ|x− y − (x− y)(x+ y)|
= 4µ|(x− y)(1− (x+ y))|
= 4µ|(x− y)(1− x− y)|
= 4µ|x− y| |1− x− y|
≤ 4µ|x− y|.

This implies that T is contraction mapping when 4µ < 1, i.e., when µ ∈ [0, 1/4).

Theorem 7.1.8 (Contraction Mapping Principle). For a nonempty closed subset
D of a Banach space (X, ‖ · ‖), if f : D → D is a contraction mapping, then there exists
a unique fixed point x̄ ∈ D for f .



Proof. For a fixed x0 ∈ D we form a sequence (xn)∞n=0 iteratively by

xn+1 = f(xn), n = 0, 1, 2, 3, . . . .

We show that the sequence (xn)∞n=0 is Cauchy in X.

Let k ∈ [0, 1) be the constant for the contraction mapping f : D → D, i.e.,

‖f(x)− f(y)‖ ≤ k‖x− y‖

for all x, y ∈ D.

Then for n ≥ 2 we have

‖xn − xn−1‖ = ‖f(xn−1)− f(xn−2)‖
≤ k‖xn−1 − xn−2‖
= k‖f(xn−2)− f(xn−3)‖
≤ k2‖xn−2 − xn−3‖

...

= kn−2‖x2 − x1‖
= kn−2‖f(x1)− f(x0)‖
≤ kn−1‖x1 − x0‖.

Hence for n > m ≥ 0 we have

‖xn − xm‖ = ‖xn − xn−1 + xn−1 − xn−2 + · · ·+ xm+2 − xm+1 + xm+1 − xm‖
≤ ‖xn − xn−1‖+ ‖xn−1 − xn−2‖+ · · ·+ ‖xm+2 − xm+1‖+ ‖xm+1 − xm‖
≤ kn−1‖x1 − x0‖+ kn−2‖x1 − x0‖+ · · ·+ km+1‖x1 − x0‖+ km‖x1 − x0‖
= km(1 + k + k2 + · · ·+ kn−m−1)‖x1 − x0‖.

We get an upper bound on 1+k+k2+· · ·+kn−m−1 using the geometric series in k ∈ [0, 1),
i.e.,

∞∑
l=0

kl =
1

1− k

and that k ≥ 0, so that

1 + k + k2 + · · ·+ kn−m−1 ≤
∞∑
l=0

kl =
1

1− k
.

Thus for n > m ≥ 0 we have

‖xn − xm‖ ≤
km

1− k
‖x1 − x0‖.

Since k ∈ [0, 1), we have km → 0 as m→∞.



To see that (xn)∞n=0 is Cauchy in X, for ε > 0 we choose N ∈ N so that

kN

1− k
‖x1 − x0‖ < ε,

for then

‖xn − xm‖ ≤
kN

1− k
‖x1 − x0‖ < ε.

The completeness of X implies that the Cauchy sequence (xn)∞n=0 converges to an element
x̄ ∈ X.

Since D is closed and (xn)∞n=0 ⊂ D, the limit point x̄ belongs to D.

To see that x̄ is a fixed point of f we have for ε > 0 the existence of N ∈ N such that
‖xn − x̄‖ < ε/2 for all n ≥ N ; hence for all n ≥ N we have

‖f(x̄)− x̄‖ = ‖f(x̄)− f(xn) + f(xn)− x̄‖
≤ ‖f(x̄)− f(xn)‖+ ‖f(xn)− x̄‖
≤ k‖x̄− xn‖+ ‖xn+1 − x̄‖

≤ kε

2
+
ε

2

<
ε

2
+
ε

2
= ε.

Since ε > 0 is arbitrary, we obtain ‖f(x̄)− x̄‖ = 0, i.e., f(x̄) = x̄.

To show the uniqueness of the fixed point x̄ suppose there was another fixed point ȳ of
f in D.

Then
‖x̄− ȳ‖ = ‖f(x̄)− f(ȳ)‖ ≤ k‖x̄− ȳ‖.

This implies, since 0 ≤ k < 1 that ‖x̄− ȳ‖ = 0, i.e., x̄ = ȳ. �

Remark 7.1.9. The contraction mapping principle also applies to contraction mappings
f : D → D on a closed subset D of a complete metric space (X, d) by replacing every
occurrence of ‖x− y‖ with d(x, y), etc., in the definition of contraction mapping and the
proof of the Contraction Mapping Principle.

Remark 7.1.10. The proof of the Contraction Mapping Principle uses a technique
called the method of successive approximations for finding the fixed point.

No matter the initial guess x0 for the fixed point, the sequence (xn)∞n=1 determined iter-
atively by xn+1 = f(xn) always converges to the unique fixed point x̄ of f on D.

An bound on the error of the mth approximation xm for x̄ is obtained from the Cauchy
estimate,

‖x̄− xm‖ = lim
n→∞

‖xn − xm‖ ≤
km

1− k
‖x1 − x0‖,

where we have pulled the limit outside the norm by its the continuity.



Vista 7.1.11. The contraction mapping principle is used to prove existence of solutions
to many equations, such as initial value problems for systems of first-order differential
equations (coming your way in Volume 4, if not sooner in disguise).

Example 7.1.12. An algorithm for finding the positive square roots of real numbers
greater than one uses the method of successive approximations.

For c2 = b ≥ 1 the number c ≥ 1 (the positive square root of c2) is a fixed point of the
function f : (0,∞)→ (0,∞) defined by

f(x) =
1

2

(
x+

b

x

)
because

f(c) =
1

2

(
c+

b

c

)
=

1

2

(
c+

c2

c

)
= c.

The function f is not a contraction mapping on (0,∞): for x = 2/n and y = 1/n we
have

f(x)− f(y) =
1

2

(
2

n
+
bn

2
− 1

n
− bn

)
=

1

2n
− bn

4
=

2

4n
− bn2

4n
=

2− bn2

4n

so that for all sufficiently large n we have

|f(2/n)− f(1/n)| = bn2 − 2

4n

while ∣∣∣∣ 2n − 1

n

∣∣∣∣ =
1

n
,

so that for all sufficiently large n we have

|f(2/n)− f(1/n)| = bn2 − 4

4n
>

1

n
=

∣∣∣∣ 2n − 1

n

∣∣∣∣ .
But f is a contraction mapping on the closed interval [

√
b/2,∞).

To see this we start with

|f(x)− f(y)| = 1

2

∣∣∣∣x− y +
b

x
− b

y

∣∣∣∣ =
1

2

∣∣∣∣x− y +
b(y − x)

xy

∣∣∣∣ =
1

2

∣∣∣∣(x− y)

(
1− b

xy

)∣∣∣∣ .
When x, y ≥

√
b/2, then xy ≥ b/2 and −2 ≤ −b/xy, so that

−1 = 1− 2 ≤ 1− b

xy
≤ 1,

whence

|f(x)− f(y)| = 1

2
|x− y|

∣∣∣∣ bxy − 1

∣∣∣∣ ≤ 1

2
|x− y|.



Thus f is a contraction mapping on [
√
b/2,∞) with constant k = 1/2.

Taking any initial guess x0 ≥
√
b/2 gives a sequence (xn)∞n=0 determined by xn+1 = f(xn)

that converges (quite rapidly because k = 1/2) to the square root c.

Example (in lieu of 7.1.13). A subset of the Banach space (C([0, 1],R), ‖ · ‖∞) is
the set

D = {x(t) ∈ C([0, 1],R) : x(0) = 0}.

This D is a subspace because for x(t), y(t) ∈ D we have ax(0)+by(0) = 0 for all a, b ∈ R.

This D is also closed because for any convergent sequence (xn(t))∞n=1 ⊂ D, the limit
function x(t) ∈ C([0, 1],R) satisfies x(0) = lim xn(0) = 0.

Consider the operator F : D → D defined by

F (x)(t) =

∫ t

0

f(x(τ)) dτ, t ∈ [0, 1],

where f : R→ R is Lipschitz with constant 0 ≤ L < 1, i.e., for all x, y ∈ R there holds

|f(x)− f(y)| ≤ L|x− y|.

That F (x)(t) ∈ D when x(t) ∈ D follows because the continuity of f(x(τ)) on [0, 1]
implies the continuity of F (x)(t) =

∫ t

0
f(x(τ)) dτ on [0, 1] (see Theorem 5.10.12(v)), and

because F (x)(0) = 0.

We show that F is a contraction mapping on D.

For x(t), y(t) ∈ D we have

|F (x)(t)− F (y)(t)| =
∣∣∣∣∫ 1

0

(
f(x(τ))− f(y(τ))

)
dt

∣∣∣∣
≤
∫ t

0

|f(x(τ))− f(y(τ))| dt

≤
∫ t

0

L|x(τ)− y(τ)| dt

≤
∫ 1

0

L|x(τ)− y(τ)| dt

≤
∫ 1

0

L‖x− y‖∞

= L‖x− y‖∞.

This implies that

‖F (x)− F (y)‖∞ = sup
t∈[0,1]

|F (x)(t)− F (y)(t)| ≤ L‖x− y‖∞.

Since 0 ≤ L < 1, the operator F is a contraction mapping on D.



By the Contraction Mapping Principle, the operator F has a unique fixed point x̄(t) ∈ D,
i.e.,

x̄(t) = F (x̄)(t) =

∫ t

0

f(x̄(τ)) dτ, t ∈ [0, 1].

By the Fundamental Theorem of Calculus part (i), the function t →
∫ t

0
f(x̄(τ)) dτ is

differentiable on (0, 1) with derivative

d

dt

∫ t

0

f(x̄(τ)) dt = f(x̄(t)).

This implies, since x̄(t) =
∫ t

0
f(x̄(τ)) dτ , that x̄(t) is also differentiable on (0, 1), i.e.,

x̄′(t) = f(x̄(t)), t ∈ (0, 1).

Thus we have the existence of a unique solution x̄(t) of the first-order differential equation
x′ = f(x) on the interval (0, 1) that extends continuously to [0, 1] and satisfies the initial
condition x(0) = 0.

This is not quite the Fundamental Existence and Uniqueness Theorem for Initial Value
Problems in Ordinary Differential Equations, but it is close.

Are there any functions f : R→ R that are Lipschitz with constant 0 ≤ L < 1?

Yes, there are. The function f(x) = (1/3)e−x
2

is Lipschitz with constant L = 2/3.

By the Mean Value Theorem applied to f on the interval [x, y] we have

|f(x)− f(y)| ≤ sup
t∈(x,y)

|f ′(t)| |x− y|.

The derivative

f ′(t) = −2te−t
2

3

has limit 0 as t→ ±∞ and its critical points are the zeros of

f ′′(t) = −2

3

(
e−t

2 − 2t2e−t
2)

= −2e−t
2

3

(
1− 2t2

)
which critical points are t = ±

√
1/2 at which f ′ has its maximum and minimum values

|f ′(±
√

1/2)| =

∣∣∣∣∣∓2
√

1/2 e−1/2

3

∣∣∣∣∣ ≤ 2

3
.

Thus f is Lipschitz on R with constant L = 2/3.

Theorem 7.1.14. For a nonempty closed subset D of a Banach space (X, ‖ · ‖), if for
f : D → D there is n ∈ N such that fn is a contraction on D, then there exists a unique
fixed point x̄ ∈ D for f .

The proof of this is HW (Exercise 7.6).


