
Math 346 Lecture #9
7.3 Newton’s Method

Newton’s method, for finding a zero of a function, is quite simple: use linear approxima-
tions to generate a sequence of successive approximations.

For a Banach space X, the linear approximation of a differentiable f : X → X at a point
xn ∈ X is

L(x) = f(xn) +Df(xn)(x− xn).

If Df(xn) ∈ B(X) is invertible, then L has a unique zero at

xn+1 = xn −Df(xn)−1f(xn).

Starting with a guess x0 ∈ X, we form a sequence of successive approximations (xn)∞n=0

which will converge to a zero x̄ of f if x0 is close enough to x̄ and Df(x) has bounded
inverse for all x in an open ball centered at x̄.

7.3.1 Convergence

For a sequence (xn)∞n=0 in a normed linear space (X, ‖ · ‖) converging to x̄ ∈ X, we
quantify two different rates of convergence.

Definition 7.3.1. For (xn)∞n=0 converging to x̄ in a normed linear space (X, ‖·‖), denote
the error between xn and x̄ by

εn = ‖xn − x̄‖.

The sequence (xn)∞n=0 converges linearly with rate µ ∈ [0, 1) if for all n = 0, 1, 2, 3, . . .
there holds

εn+1 ≤ µεn.

The sequence (xn)∞n=0 converges quadratically with rate k ≥ 0 (not necessarily smaller
than 1) if for all n = 0, 1, 2, 3, . . . there holds

εn+1 ≤ kε2n.

For convergent sequences of real numbers, linear convergence with rate µ adds about
log10 µ digits of accuracy each iteration, while quadratic convergence with rate k doubles
the number of digits of accuracy with each iteration.

7.3.2 Newton’s Method: Scalar Version

Convergence of Newton’s method is a consequence of the Contraction Mapping Principle.

Lemma 7.3.2. Let f : [a, b] → R be C2. If there is x̄ ∈ (a, b) such that f(x̄) = 0 and
f ′(x̄) 6= 0, then there exists δ > 0 such that [x̄− δ, x̄+ δ] ⊂ [a, b] and the function

φ(x) = x− f(x)

f ′(x)

maps [x̄− δ, x̄+ δ] into [x̄− δ, x̄+ δ] and is a contraction on [x̄− δ, x̄+ δ].

Proof. Continuity of f ′ at x̄ and f ′(x̄) 6= 0 imply the existence of δ1 > 0 such that
(x̄− δ1, x̄+ δ1) ⊂ (a, b) and |f ′(x)| > |f(x̄)|/2 > 0 for all x ∈ (x̄− δ1, x̄+ δ1).



Since f is C2, the function φ is C1 on (x̄− δ1, x̄+ δ1) with derivative

φ′(x) = 1− (f ′(x))2 − f(x)f ′′(x)

(f ′(x))2
=
f(x)f ′′(x)

(f ′(x))2
.

Continuity of f ′′ on [a, b] implies the existence of M > 0 such that |f ′′(x)| ≤M on [a, b].

This together with |f ′(x)| > |f(x̄)|/2 on (x̄− δ1, x̄+ δ1) gives for all x ∈ (x̄− δ1, x̄+ δ1)
that

|φ′(x)| ≤ 2M

|f(x̄)|2
|f(x)|.

Continuity of f at x̄ and f(x̄) = 0 gives the existence of δ ∈ (0, δ1) such that for all
x ∈ [x̄− δ, x̄+ δ] there holds

|f(x)| ≤ |f
′(x̄)|2

2M

9

10
.

Thus on [x̄− δ, x̄+ δ] we have

|φ′(x)| ≤ 9

10
.

By the Mean Value Theorem, for any [x, y] ⊂ [x̄ − δ, x̄ + δ] there exists c ∈ (x, y) such
that

|φ(x)− φ(y)| = |φ′(c)| |x− y| ≤ 9

10
|x− y|.

Since x̄ is a fixed point of φ, then for any x ∈ [x̄− δ, x̄+ δ] there holds

|φ(x)− x̄| = |φ(x)− φ(x̄)| ≤ 9

10
|x− x̄| ≤ 9δ

10
< δ.

Therefore φ maps [x̄− δ, x̄+ δ] into [x̄− δ, x̄+ δ] (which is what Remark 7.3.3 says) and
is a contraction on [x̄− δ, x̄+ δ]. �

Theorem 7.3.4 (Newton’s Method–Scalar Version). If f : [a, b]→ R is C2, and
there is x̄ ∈ (a, b) such that f(x̄) = 0 and f ′(x̄) 6= 0, then the sequence (xn)∞n=0 defined
iteratively by

xn+1 = xn −
f(xn)

f ′(xn)

converges to x̄ quadratically whenever x0 is sufficiently close to x̄.

Proof. Since f is C2, the derivative f ′ is locally Lipschitz at x̄ by Proposition 6.3.7: there
exists δ1 > 0 and L > 0 such that for all |h| < δ1 there holds

|f ′(x̄+ h)− f ′(x̄)| ≤ L|h|.

By Lemma 7.3.2, there exists δ2 > 0 such that the function φ(x) = x − f(x)/f ′(x) is a
contraction on [x̄− δ2, x̄+ δ2].

Choose δ < min{δ1, δ2}.
For an initial condition x0 ∈ [x̄ − δ, x̄ + δ], the sequence (xn)∞n=0 defined iteratively by
xn+1 = φ(xn) converges to x̄ (as x̄ is a fixed point of f and the Contraction Mapping
Principle guarantees a unique fixed point, so the limit of (xn)∞n=0 must be x̄).



Set εn = xn − x̄.

The function h→ f(x̄+ hεn−1) is continuous on h ∈ [0, 1] and differentiable on (0, 1).

By the Mean Value Theorem (and f(x̄) = 0) there exists η ∈ (0, 1) such that

f(x̄+ εn−1) = f(x̄+ εn−1)− f(x̄) = f ′(x̄+ ηεn−1)εn−1.

This applies even when εn−1 < 0.

From the iterative definition of (xn)∞n=0 we have

|εn| = |xn − x̄|

=

∣∣∣∣xn−1 − f(xn−1)

f ′(xn−1)
− x̄
∣∣∣∣

=

∣∣∣∣εn−1 − f(x̄+ εn−1)

f ′(x̄+ εn−1)

∣∣∣∣
=

∣∣∣∣f ′(x̄+ εn−1)εn−1 − f(x̄+ εn−1)

f ′(x̄+ εn−1)

∣∣∣∣
=

∣∣∣∣f ′(x̄+ εn−1)εn−1 − f ′(x̄+ ηεn−1)εn−1
f ′(x̄+ εn−1)

∣∣∣∣
=

∣∣∣∣f ′(x̄+ εn−1)− f ′(x̄+ ηεn−1)

f ′(x̄+ εn−1)

∣∣∣∣ |εn−1|
=

∣∣∣∣f ′(x̄+ εn−1)− f ′(x̄) + f ′(x̄)− f ′(x̄+ ηεn−1)

f ′(x̄+ εn−1)

∣∣∣∣ |εn−1|
≤
{ ∣∣∣∣f ′(x̄+ εn−1)− f ′(x̄)

f ′(x̄+ εn−1)

∣∣∣∣+

∣∣∣∣f ′(x̄)− f ′(x̄+ ηεn−1)

f ′(x̄+ εn−1)

∣∣∣∣ }|εn−1|
≤
{

L|εn−1|
|f ′(x̄+ εn−1)|

+
L|ηεn−1|

|f ′(x̄+ εn−1)|

}
|εn−1|

≤
{

L|εn−1|
|f ′(x̄+ εn−1)|

+
L|εn−1|

|f ′(x̄+ εn−1)|

}
|εn−1|

=
2L

|f ′(x̄+ εn−1)|
|εn−1|2.

Since |f ′| ≥ |f ′(x̄)|/2 on [x̄− δ, x̄+ δ] (by the choice of δ in Lemma 7.3.2), the quantity

M = inf{|f ′(t)| : x̄− δ ≤ t ≤ x̄+ δ}

is finite and positive.

With |f ′(t)| ≥M for t ∈ [x̄− δ, x̄+ δ], we thus have

|εn| ≤
2L

M
|εn−1|2,

giving quadratic convergence. �



Example 7.3.5. The function

g(x) =
1

2

(
x+

b

x

)
that gives the square root of b ≥ 1 as the limit of the sequence (xn)∞n=0 where x0 ≥

√
b/2

and xn+1 = g(xn), is Newton’s method applied to f(x) = x2 − b because f ′(x) = 2x so
that

xn+1 = xn −
x2n − b

2xn
= xn −

xn
2

+
b

2xn
=

1

2

(
xn +

b

xn

)
.

The function f(x) = x2− b is C2 on [
√
b/2, b] with f(x̄) = 0 for x̄ =

√
b ∈ [

√
b/2, b], and

f ′(x̄) 6= 0.

By Theorem 7.3.4, the convergence of (xn)∞n=0 to x̄ =
√
b is quadratic.

Remark 7.3.6. If f ′(x̄) = 0, then Newton’s method is not necessarily quadratic in
convergence and it may not even converge!

When f ′(x̄) = 0, we say that f has a multiple zero at x̄.

When f ′(x̄) = 0, we say that f has a simple, or isolated, zero at x̄, i.e., there is no other
zero of f in a open ball centered at x̄.

Remark 7.3.8. The sequence arising in Newton’s method may not converge if the
initial guess x0 is not close enough to x̄. Unexample 7.3.9 gives an example of an initial
guess x0 for which |xn| → ∞.

7.3.3 A Quasi-Newton Method: Vector Version

The Quasi-Newton method is similar to the Newton method, but it depends on knowing
a priori (knowing before hand) the fixed point. The sequence arising from the Quasi-
Newton method converges but not necessarily quadratically. The Quasi-Newton method
plays a key role in the proof of the Implicit Function Theorem of Section 7.4.

Definition. For a Banach space (X, ‖ · ‖), an operator A ∈ B(X) is said to have
bounded inverse if A is invertible, and its inverse A−1 ∈ L (X) has finite operator norm,
i.e.,

‖A−1‖ = sup

{
‖A−1x‖
‖x‖

: x ∈ X, x 6= 0

}
,

so that A−1 ∈ B(X). In this case we have AA−1 = I = A−1A.

For X finite dimensional, every invertible operator has bounded inverse, but this is not
true when X is infinite dimensional (think integration versus differentiation).

Theorem 7.3.10. Let (X, ‖ · ‖) be a Banach space, f : X → X a C1 function, and U
an open neighbourhood of x̄ ∈ X. If f(x̄) = 0 and Df(x̄) ∈ B(X) has bounded inverse,
then there exists δ > 0 such that B(x̄, δ) ⊂ U and

φ(x) = x−Df(x̄)−1f(x)

is a contraction on B(x̄, δ).



Proof. By the hypothesized continuity of Df , there exists δ > 0 such that B(x̄, δ) ⊂ U
and for all x ∈ B(x̄, δ) there holds

‖Df(x̄)−Df(x)‖ < 1

2‖Df(x)−1‖
.

Hence for every x ∈ B(x̄, δ) we have

‖Dφ(x)‖ = ‖I −Df(x̄)−1Df(x)‖
= ‖Df(x̄)−1Df(x̄)−Df(x̄)−1Df(x)‖
≤ ‖Df(x̄)−1‖ ‖Df(x)−Df(x)‖

<
‖Df(x̄)−1‖
2‖Df(x̄)−1‖

=
1

2
.

For x, y ∈ B(x̄, δ), applying the Integral Mean Value Theorem along the line segment
`(x, y) gives

‖φ(x)− φ(y)‖ =

∥∥∥∥∫ 1

0

Dφ((1− t)x + ty)(x− y) dt

∥∥∥∥
≤
∫ 1

0

‖Dφ((1− t)x + ty)‖ ‖x− y‖ dt

≤
∫ 1

0

‖x− y‖
2

dt

=
1

2
‖x− y‖.

This shows that φ is a contraction mapping on B(x̄, δ). �

If we happen to know the fixed point x̄ of φ, then we can compute Df(x̄)−1 and use φ
to determine a sequence (xn)∞n=0 defined iteratively by

xn+1 = φ(xn) = xn −Df(x̄)−1f(xn).

If we do not know x̄, then we might be able to find a good approximation of Df(x̄)−1

that we can use in φ to determine (xn)∞n=0.

Lemma 7.3.11. For a Banach space (X, ‖·‖) suppose that g : X → B(X) is continuous.
For x̄ ∈ X, if g(x̄) has bounded inverse, then there exists a δ > 0 such that for all
x ∈ B(x̄, δ) there holds

‖g(x)−1‖ < 2‖g(x̄)−1‖.

Proof. Proposition 5.7.7 (from Subsection 5.7.4 that we skipped) states that the function
A→ A−1 on

GL(X) = {A ∈ B(X) : A−1 exists and belongs to B(X)}



is a continuous function.

Since g(x̄) has bounded inverse, i.e., g(x̄) ∈ GL(X), the continuity of g : X → B(X) at
x̄ implies for ε = ‖g(x̄)−1‖ the existence of δ > 0 such that for all x ∈ B(x̄, δ) there holds

‖g(x)−1 − g(x̄)−1‖ < ε.

Thus

‖g(x)−1‖ = ‖g(x)−1 − g(x̄)−1 + g(x̄)−1‖
≤ ‖g(x)−1 − g(x̄)−1‖+ ‖g(x̄)−1‖
< ε+ ‖g(x̄)−1‖
= 2‖g(x̄)−1‖.

whenever x ∈ B(x̄, δ). �.

7.3.4 Newton’s Method: Vector Version

We extend the scalar version of Newton’s method to the general Banach space setting.

Theorem 7.3.12 (Newton’s Method–Vector Version. Let (X, ‖ · ‖) be a Banach
space and f : X → X. Suppose there is an open neighbourhood U of x̄ ∈ X for which
f ∈ C1(U,X) and f(x̄) = 0. If Df(x̄) has bounded inverse and Df is Lipschitz on U ,
then for x0 ∈ U chosen sufficiently close to x̄, the sequence (xn)∞n=0 defined iteratively by

xn+1 = xn −Df(xn)−1f(xn)

converges quadratically to x̄.

Proof. The assumed Lipschitz of Df on U implies the continuity if Df on U .

By Lemma 7.3.11 there exists δ > 0 such that B(x̄, δ) ⊂ U and for all x ∈ B(x̄, δ) there
holds

‖Df(x)−1‖ < 2‖Df(x̄)−1‖.

For x0 ∈ B(x̄, δ), form the sequence (xn)∞n=0 by

xn+1 = xn −Df(xn)−1f(xn).

By the Integral Mean Value Theorem (which is the first-order Taylor expansion) we have

f(xn)− f(x̄) =

∫ 1

0

Df(x̄ + t(xn − x̄))(xn − x̄) dt

= Df(x̄)(xn − x̄) +

∫ 1

0

(
Df(x̄ + t(xn − x̄))−Df(x̄)

)
(xn − x̄) dt.

This gives

f(xn)− f(x̄)−Df(x̄)(xn − x̄) =

∫ 1

0

(
Df(x̄ + t(xn − x̄))−Df(x̄)

)
(xn − x̄) dt.



Again by the assumed Lipschitz of Df on U , there is k > 0 such that for all x, y ∈ U
there holds

‖Df(x)−Df(y)‖ ≤ k‖x− y‖.

Applying this gives

‖f(xn)− f(x̄)−Df(x̄)(xn − x̄)‖

≤
∫ 1

0

‖
(
Df(x̄ + t(xn − x̄))−Df(x̄)

)
(xn − x̄)‖ dt

≤
∫ 1

0

‖Df(x̄ + t(xn − x̄))−Df(x̄)‖ ‖xn − x̄‖ dt

≤
∫ 1

0

k‖t(xn − x̄)‖ ‖xn − x̄‖ dt

=

∫ 1

0

kt‖xn − x̄‖ ‖xn − x̄‖ dt

= k‖xn − x̄‖2
∫ 1

0

t dt

=
k

2
‖xn − x̄‖2.

From the inductive definition of (xn)∞n=0 and f(x̄) = 0 we have

xn+1 − x̄ = xn −Df(xn)−1f(xn)− x̄

= xn −Df(xn)−1f(xn)− x̄ +Df(xn)−1f(x̄)

= xn − x̄−Df(xn)−1(f(xn)− f(x̄))

= xn − x̄−Df(xn)−1
(
Df(x̄)(xn − x̄) + f(xn)− f(x̄)−Df(x̄)(xn − x̄)

)
= Df(xn)−1Df(xn)(xn − x̄)

−Df(xn)−1
(
Df(x̄)(xn − x̄) + f(xn)− f(x̄)−Df(x̄)(xn − x̄)

)
= Df(xn)−1

(
Df(xn)−Df(x̄)

)
(xn − x̄)

−Df(xn)−1
(
f(xn)− f(x̄)−Df(x̄)(xn − x̄)

)
.

Using the triangle inequality and the estimates above we have

εn+1 = ‖xn+1 − x̄‖
≤ ‖Df(xn)−1

(
Df(xn)−Df(x̄)

)
(xn − x̄)‖

+ ‖Df(xn)−1
(
f(xn)− f(x̄)−Df(x̄)(xn − x̄)

)
‖

≤ ‖Df(xn)−1‖ ‖Df(xn)−Df(x̄)‖ ‖xn − x̄‖
+ ‖Df(xn)−1‖ ‖f(xn)− f(x̄)−Df(x̄)(xn − x̄)]‖

< 2k‖Df(x̄)−1‖ ‖x̄n − x̄‖2 + k‖Df(x̄)−1‖ ‖x̄n − x̄‖2

= 3k‖Df(x̄)−1‖ε2n.

With M = 3k‖Df(x̄)−1‖ we have obtained εn+1 ≤Mε2n. �



Remark 7.3.13. There is a way to know whether the initial guess x0 is close enough
to x̄ so that the sequence (xn)∞n=0 converges to x̄.

The Newton-Kantorovich Theorem, which generalizes Lemma 7.3.2, states that, under
the hypothesis of Theorem 7.3.12, if

k‖f(x0)‖ ‖Df(x0)
−1‖2 ≤ 1

2
,

where k is the Lipschitz constant of Df : U → B(X), then x0 is close enough.

Example (in lieu of 7.3.14). We illustrate the use of the Newton-Kantorovich The-
orem for the function f : R2 → R2 defined by

f(x, y) =

[
x2 − y

x+ y − 1

]
.

This function has a zero x̄ in the first quadrant where the curves x2−y = 0 and x+y−1 =
0 intersect. See the following graph.

A starting guess for Newton’s method is x0 =
[
1/2 1/2

]T
.

Using the ∞-norm on R2 we have

‖f(x0)‖∞ =

∥∥∥∥[−1/4
0

]∥∥∥∥
∞

=
1

4
.

Since

Df(x, y) =

[
2x −1
1 1

]
we have

Df(x, y)−1 =
1

2x+ 1

[
1 1
−1 2x

]
.

This gives

Df(x0)
−1 =

1

2

[
1 1
−1 1

]
=

[
1/2 1/2
−1/2 1/2

]



for which (by Theorem 3.5.20) we have

‖Df(x0)
−1‖∞ = 1.

It remains to find the value of k in the Lipschitz condition for Df on some neighbourhood
U of x̄.

We use second derivative of f to get k.

By the Integral Mean Value Theorem we have

‖Df(x)−Df(y)‖∞ ≤ sup
c∈`(y,x)

‖D2f(c)‖ ‖x− y‖∞.

With f = (f1, f2) we have

Df1(x, y) =
[
2x 1

]
and Df2 =

[
1 1

]
.

Thus

D2f1(x, y) =

[
2 0
0 0

]
and D2f2(x, y) =

[
0 0
0 0

]
.

With D2f(x, y) ∈ B(R2,R2;R2) and h1, h2 ∈ R2, we have

D2f(x, y)(h1, h2) =

[
hT
1D

2f1(x, y)h2

h1D
2f2(x, y)h2

]
.

The second entry here is always 0 ∈ R, while for the first entry, with

h1 =

[
a
b

]
and h2 =

[
c
d

]
,

we have
hT
1D

2f1(x, y)h2 = 2ac ∈ R.

From this we get for h1, h2 6= 0 that

‖hT
1D

2f(x, y)h2‖∞
‖h1‖∞‖h2‖∞

=
2|ac|

sup{|a|, |b|} sup{|c|, |d|}
≤ 2.

This implies for all (x, y) that
‖D2f(x, y)‖ ≤ 2.

Thus by the Integral Mean Value Theorem we have for all x, y ∈ R2 that

‖Df(x)−Df(y)‖ ≤ 2‖x− y‖∞

and so the Lipschitz constant for Df on U = R2 is k = 2.

The initial guess of x0 = (1/2, 1/2) satisfies the Newton-Kantorovich condition because

k‖f(x0)‖ ‖Df(x0)
−1‖2 = 2(1/4)(1)2 =

1

2
.



The sequence of successive approximations (xn)∞n=0 defined by

xn+1 = xn −Df(xn)−1f(xn)

therefore converges quadratically to the root of f in the first quadrant.

Here

x1 = x0 −Df(x0)
−1f(x0)

=

[
1/2
1/2

]
− 1

2(1/2) + 1

[
1 1
−1 1

] [
−1/4

0

]
=

[
1/2
1/2

]
− 1

2

[
−1/4
1/4

]
=

[
1/2
1/2

]
+

[
1/8
−1/8

]
=

[
5/8
3/8

]
=

[
0.625
0.375

]
.

and

x2 =

[
5/8
3/8

]
− 1

2(5/8) + 1

[
1 1
−1 2(5/8)

] [
(5/8)2 − 3/8
5/8 + 3/8− 1

]
=

[
5/8
3/8

]
− 4

9

[
1 1
−1 5/4

] [
1/64

0

]
=

[
5/8
3/8

]
− 4

9

[
1/64
−1/64

]
=

[
5/8− 1/144
3/8 + 1/144

]
=

[
0.61805556
0.3819444

]
.

We can explicitly compute the limit x̄ = (x̄, ȳ) of (xn)∞n=0 because we can algebraically
solve the system of equations

x2 − y = 0,

x+ y − 1 = 0.

The second gives −y = x− 1 and substitution of this into the first gives the quadratic

x2 + x− 1 = 0.

By the quadratic formula we have

x̄ =
−1 +

√
5

2
∼= 0.618033988749895

so that by y = 1− x we have

ȳ =
3−
√

5

2
∼= 0.381966011250105.

The iterate x2 has four correct digits in both entries!


