Math 346 Lecture \#9

7.3 Newton's Method

Newton's method, for finding a zero of a function, is quite simple: use linear approximations to generate a sequence of successive approximations.
For a Banach space X, the linear approximation of a differentiable $f: X \rightarrow X$ at a point $\mathrm{x}_{n} \in X$ is

$$
L(\mathrm{x})=f\left(\mathrm{x}_{n}\right)+D f\left(\mathrm{x}_{n}\right)\left(\mathrm{x}-\mathrm{x}_{n}\right)
$$

If $D f\left(\mathrm{x}_{n}\right) \in \mathscr{B}(X)$ is invertible, then L has a unique zero at

$$
\mathrm{x}_{n+1}=\mathrm{x}_{n}-D f\left(\mathrm{x}_{n}\right)^{-1} f\left(\mathrm{x}_{n}\right) .
$$

Starting with a guess $\mathrm{x}_{0} \in X$, we form a sequence of successive approximations $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ which will converge to a zero $\overline{\mathrm{x}}$ of f if x_{0} is close enough to $\overline{\mathrm{x}}$ and $D f(\mathrm{x})$ has bounded inverse for all x in an open ball centered at $\overline{\mathrm{x}}$.

7.3.1 Convergence

For a sequence $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ in a normed linear space $(X,\|\cdot\|)$ converging to $\overline{\mathrm{x}} \in X$, we quantify two different rates of convergence.
Definition 7.3.1. For $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ converging to $\overline{\mathrm{x}}$ in a normed linear space $(X,\|\cdot\|)$, denote the error between x_{n} and \bar{x} by

$$
\epsilon_{n}=\left\|\mathrm{x}_{n}-\overline{\mathrm{x}}\right\|
$$

The sequence $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ converges linearly with rate $\mu \in[0,1)$ if for all $n=0,1,2,3, \ldots$ there holds

$$
\epsilon_{n+1} \leq \mu \epsilon_{n}
$$

The sequence $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ converges quadratically with rate $k \geq 0$ (not necessarily smaller than 1) if for all $n=0,1,2,3, \ldots$ there holds

$$
\epsilon_{n+1} \leq k \epsilon_{n}^{2}
$$

For convergent sequences of real numbers, linear convergence with rate μ adds about $\log _{10} \mu$ digits of accuracy each iteration, while quadratic convergence with rate k doubles the number of digits of accuracy with each iteration.

7.3.2 Newton's Method: Scalar Version

Convergence of Newton's method is a consequence of the Contraction Mapping Principle.
Lemma 7.3.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be C^{2}. If there is $\bar{x} \in(a, b)$ such that $f(\bar{x})=0$ and $f^{\prime}(\bar{x}) \neq 0$, then there exists $\delta>0$ such that $[\bar{x}-\delta, \bar{x}+\delta] \subset[a, b]$ and the function

$$
\phi(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

maps $[\bar{x}-\delta, \bar{x}+\delta]$ into $[\bar{x}-\delta, \bar{x}+\delta]$ and is a contraction on $[\bar{x}-\delta, \bar{x}+\delta]$.
Proof. Continuity of f^{\prime} at \bar{x} and $f^{\prime}(\bar{x}) \neq 0$ imply the existence of $\delta_{1}>0$ such that $\left(\bar{x}-\delta_{1}, \bar{x}+\delta_{1}\right) \subset(a, b)$ and $\left|f^{\prime}(x)\right|>|f(\bar{x})| / 2>0$ for all $x \in\left(\bar{x}-\delta_{1}, \bar{x}+\delta_{1}\right)$.

Since f is C^{2}, the function ϕ is C^{1} on $\left(\bar{x}-\delta_{1}, \bar{x}+\delta_{1}\right)$ with derivative

$$
\phi^{\prime}(x)=1-\frac{\left(f^{\prime}(x)\right)^{2}-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} .
$$

Continuity of $f^{\prime \prime}$ on $[a, b]$ implies the existence of $M>0$ such that $\left|f^{\prime \prime}(x)\right| \leq M$ on $[a, b]$. This together with $\left|f^{\prime}(x)\right|>|f(\bar{x})| / 2$ on $\left(\bar{x}-\delta_{1}, \bar{x}+\delta_{1}\right)$ gives for all $x \in\left(\bar{x}-\delta_{1}, \bar{x}+\delta_{1}\right)$ that

$$
\left|\phi^{\prime}(x)\right| \leq \frac{2 M}{|f(\bar{x})|^{2}}|f(x)|
$$

Continuity of f at \bar{x} and $f(\bar{x})=0$ gives the existence of $\delta \in\left(0, \delta_{1}\right)$ such that for all $x \in[\bar{x}-\delta, \bar{x}+\delta]$ there holds

$$
|f(x)| \leq \frac{\left|f^{\prime}(\bar{x})\right|^{2}}{2 M} \frac{9}{10}
$$

Thus on $[\bar{x}-\delta, \bar{x}+\delta]$ we have

$$
\left|\phi^{\prime}(x)\right| \leq \frac{9}{10}
$$

By the Mean Value Theorem, for any $[x, y] \subset[\bar{x}-\delta, \bar{x}+\delta]$ there exists $c \in(x, y)$ such that

$$
|\phi(x)-\phi(y)|=\left|\phi^{\prime}(c)\right||x-y| \leq \frac{9}{10}|x-y|
$$

Since \bar{x} is a fixed point of ϕ, then for any $x \in[\bar{x}-\delta, \bar{x}+\delta]$ there holds

$$
|\phi(x)-\bar{x}|=|\phi(x)-\phi(\bar{x})| \leq \frac{9}{10}|x-\bar{x}| \leq \frac{9 \delta}{10}<\delta .
$$

Therefore ϕ maps $[\bar{x}-\delta, \bar{x}+\delta]$ into $[\bar{x}-\delta, \bar{x}+\delta]$ (which is what Remark 7.3.3 says) and is a contraction on $[\bar{x}-\delta, \bar{x}+\delta]$.
Theorem 7.3.4 (Newton's Method-Scalar Version). If $f:[a, b] \rightarrow \mathbb{R}$ is C^{2}, and there is $\bar{x} \in(a, b)$ such that $f(\bar{x})=0$ and $f^{\prime}(\bar{x}) \neq 0$, then the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ defined iteratively by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

converges to \bar{x} quadratically whenever x_{0} is sufficiently close to \bar{x}.
Proof. Since f is C^{2}, the derivative f^{\prime} is locally Lipschitz at \bar{x} by Proposition 6.3.7: there exists $\delta_{1}>0$ and $L>0$ such that for all $|h|<\delta_{1}$ there holds

$$
\left|f^{\prime}(\bar{x}+h)-f^{\prime}(\bar{x})\right| \leq L|h| .
$$

By Lemma 7.3.2, there exists $\delta_{2}>0$ such that the function $\phi(x)=x-f(x) / f^{\prime}(x)$ is a contraction on $\left[\bar{x}-\delta_{2}, \bar{x}+\delta_{2}\right]$.
Choose $\delta<\min \left\{\delta_{1}, \delta_{2}\right\}$.
For an initial condition $x_{0} \in[\bar{x}-\delta, \bar{x}+\delta]$, the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ defined iteratively by $x_{n+1}=\phi\left(x_{n}\right)$ converges to \bar{x} (as \bar{x} is a fixed point of f and the Contraction Mapping Principle guarantees a unique fixed point, so the limit of $\left(x_{n}\right)_{n=0}^{\infty}$ must be $\left.\bar{x}\right)$.

Set $\epsilon_{n}=x_{n}-\bar{x}$.
The function $h \rightarrow f\left(\bar{x}+h \epsilon_{n-1}\right)$ is continuous on $h \in[0,1]$ and differentiable on $(0,1)$. By the Mean Value Theorem (and $f(\bar{x})=0$) there exists $\eta \in(0,1)$ such that

$$
f\left(\bar{x}+\epsilon_{n-1}\right)=f\left(\bar{x}+\epsilon_{n-1}\right)-f(\bar{x})=f^{\prime}\left(\bar{x}+\eta \epsilon_{n-1}\right) \epsilon_{n-1}
$$

This applies even when $\epsilon_{n-1}<0$.
From the iterative definition of $\left(x_{n}\right)_{n=0}^{\infty}$ we have

$$
\begin{aligned}
\left|\epsilon_{n}\right| & =\left|x_{n}-\bar{x}\right| \\
& =\left|x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}-\bar{x}\right| \\
& =\left|\epsilon_{n-1}-\frac{f\left(\bar{x}+\epsilon_{n-1}\right)}{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)}\right| \\
& =\left|\frac{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right) \epsilon_{n-1}-f\left(\bar{x}+\epsilon_{n-1}\right)}{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)}\right| \\
& =\left|\frac{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right) \epsilon_{n-1}-f^{\prime}\left(\bar{x}+\eta \epsilon_{n-1}\right) \epsilon_{n-1}}{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)}\right| \\
& =\left|\frac{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)-f^{\prime}\left(\bar{x}+\eta \epsilon_{n-1}\right)}{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)}\right|\left|\epsilon_{n-1}\right| \\
& \leq\left\{\left.\frac{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)-f^{\prime}(\bar{x})+f^{\prime}(\bar{x})-f^{\prime}\left(\bar{x}+\eta \epsilon_{n-1}\right)}{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)}| | \epsilon_{n-1} \right\rvert\,\right. \\
& \leq\left\{\frac{\mid f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)-f^{\prime}(\bar{x})}{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)}\left|+\left|\frac{f^{\prime}(\bar{x})-f^{\prime}\left(\bar{x}+\eta \epsilon_{n-1}\right)}{f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)}\right|\right\}\left|\epsilon_{n-1}\right|\right. \\
& \leq\left\{\frac{L\left|\epsilon_{n-1}\right|}{\left|f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)\right|}+\frac{L\left|\eta \epsilon_{n-1}\right|}{\left|f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)\right|}\right\}\left|\epsilon_{n-1}\right| \\
& \left.=\frac{L\left|\epsilon_{n-1}\right|}{\left|f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)\right|}+\frac{L\left|\epsilon_{n-1}\right|}{\left|f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)\right|}\right\}\left|\epsilon_{n-1}\right| \\
& =\frac{2 L}{\left|f^{\prime}\left(\bar{x}+\epsilon_{n-1}\right)\right|}\left|\epsilon_{n-1}\right|^{2} .
\end{aligned}
$$

Since $\left|f^{\prime}\right| \geq\left|f^{\prime}(\bar{x})\right| / 2$ on $[\bar{x}-\delta, \bar{x}+\delta]$ (by the choice of δ in Lemma 7.3.2), the quantity

$$
M=\inf \left\{\left|f^{\prime}(t)\right|: \bar{x}-\delta \leq t \leq \bar{x}+\delta\right\}
$$

is finite and positive.
With $\left|f^{\prime}(t)\right| \geq M$ for $t \in[\bar{x}-\delta, \bar{x}+\delta]$, we thus have

$$
\left|\epsilon_{n}\right| \leq \frac{2 L}{M}\left|\epsilon_{n-1}\right|^{2}
$$

giving quadratic convergence.

Example 7.3.5. The function

$$
g(x)=\frac{1}{2}\left(x+\frac{b}{x}\right)
$$

that gives the square root of $b \geq 1$ as the limit of the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ where $x_{0} \geq \sqrt{b / 2}$ and $x_{n+1}=g\left(x_{n}\right)$, is Newton's method applied to $f(x)=x^{2}-b$ because $f^{\prime}(x)=2 x$ so that

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-b}{2 x_{n}}=x_{n}-\frac{x_{n}}{2}+\frac{b}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{b}{x_{n}}\right) .
$$

The function $f(x)=x^{2}-b$ is C^{2} on $[\sqrt{b / 2}, b]$ with $f(\bar{x})=0$ for $\bar{x}=\sqrt{b} \in[\sqrt{b / 2}, b]$, and $f^{\prime}(\bar{x}) \neq 0$.
By Theorem 7.3.4, the convergence of $\left(x_{n}\right)_{n=0}^{\infty}$ to $\bar{x}=\sqrt{b}$ is quadratic.
Remark 7.3.6. If $f^{\prime}(\bar{x})=0$, then Newton's method is not necessarily quadratic in convergence and it may not even converge!
When $f^{\prime}(\bar{x})=0$, we say that f has a multiple zero at \bar{x}.
When $f^{\prime}(\bar{x})=0$, we say that f has a simple, or isolated, zero at \bar{x}, i.e., there is no other zero of f in a open ball centered at \bar{x}.
Remark 7.3.8. The sequence arising in Newton's method may not converge if the initial guess x_{0} is not close enough to \bar{x}. Unexample 7.3.9 gives an example of an initial guess x_{0} for which $\left|x_{n}\right| \rightarrow \infty$.

7.3.3 A Quasi-Newton Method: Vector Version

The Quasi-Newton method is similar to the Newton method, but it depends on knowing a priori (knowing before hand) the fixed point. The sequence arising from the QuasiNewton method converges but not necessarily quadratically. The Quasi-Newton method plays a key role in the proof of the Implicit Function Theorem of Section 7.4.
Definition. For a Banach space $(X,\|\cdot\|)$, an operator $A \in \mathscr{B}(X)$ is said to have bounded inverse if A is invertible, and its inverse $A^{-1} \in \mathscr{L}(X)$ has finite operator norm, i.e.,

$$
\left\|A^{-1}\right\|=\sup \left\{\frac{\left\|A^{-1} \mathrm{x}\right\|}{\|\mathrm{x}\|}: \mathrm{x} \in X, \mathrm{x} \neq 0\right\}
$$

so that $A^{-1} \in \mathscr{B}(X)$. In this case we have $A A^{-1}=I=A^{-1} A$.
For X finite dimensional, every invertible operator has bounded inverse, but this is not true when X is infinite dimensional (think integration versus differentiation).
Theorem 7.3.10. Let $(X,\|\cdot\|)$ be a Banach space, $f: X \rightarrow X$ a C^{1} function, and U an open neighbourhood of $\bar{x} \in X$. If $f(\bar{x})=0$ and $D f(\bar{x}) \in \mathscr{B}(X)$ has bounded inverse, then there exists $\delta>0$ such that $\overline{B(\overline{\mathrm{x}}, \delta)} \subset U$ and

$$
\phi(\mathrm{x})=\mathrm{x}-D f(\overline{\mathrm{x}})^{-1} f(\mathrm{x})
$$

is a contraction on $\overline{B(\overline{\mathrm{x}}, \delta)}$.

Proof. By the hypothesized continuity of $D f$, there exists $\delta>0$ such that $\overline{B(\overline{\mathrm{x}}, \delta)} \subset U$ and for all $\mathrm{x} \in \overline{B(\overline{\mathrm{x}}, \delta)}$ there holds

$$
\|D f(\overline{\mathrm{x}})-D f(\mathrm{x})\|<\frac{1}{2\left\|D f(\mathrm{x})^{-1}\right\|}
$$

Hence for every $\mathrm{x} \in \overline{B(\overline{\mathrm{x}}, \delta)}$ we have

$$
\begin{aligned}
\|D \phi(\mathrm{x})\| & =\left\|I-D f(\overline{\mathrm{x}})^{-1} D f(\mathrm{x})\right\| \\
& =\left\|D f(\overline{\mathrm{x}})^{-1} D f(\overline{\mathrm{x}})-D f(\overline{\mathrm{x}})^{-1} D f(\mathrm{x})\right\| \\
& \leq\left\|D f(\overline{\mathrm{x}})^{-1}\right\|\|D f(\mathrm{x})-D f(\mathrm{x})\| \\
& <\frac{\left\|D f(\overline{\mathrm{x}})^{-1}\right\|}{2\left\|D f(\overline{\mathrm{x}})^{-1}\right\|} \\
& =\frac{1}{2}
\end{aligned}
$$

For $\mathrm{x}, \mathrm{y} \in \overline{B(\overline{\mathrm{x}}, \delta)}$, applying the Integral Mean Value Theorem along the line segment $\ell(\mathrm{x}, \mathrm{y})$ gives

$$
\begin{aligned}
\|\phi(\mathrm{x})-\phi(\mathrm{y})\| & =\left\|\int_{0}^{1} D \phi((1-t) \mathrm{x}+t \mathrm{y})(\mathrm{x}-\mathrm{y}) d t\right\| \\
& \leq \int_{0}^{1}\|D \phi((1-t) \mathrm{x}+t \mathrm{y})\|\|\mathrm{x}-\mathrm{y}\| d t \\
& \leq \int_{0}^{1} \frac{\|\mathrm{x}-\mathrm{y}\|}{2} d t \\
& =\frac{1}{2}\|\mathrm{x}-\mathrm{y}\|
\end{aligned}
$$

This shows that ϕ is a contraction mapping on $\overline{B(\overline{\mathrm{x}}, \delta)}$.
If we happen to know the fixed point $\overline{\mathrm{x}}$ of ϕ, then we can compute $D f(\overline{\mathrm{x}})^{-1}$ and use ϕ to determine a sequence $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ defined iteratively by

$$
\mathrm{x}_{n+1}=\phi\left(\mathrm{x}_{n}\right)=\mathrm{x}_{n}-D f(\overline{\mathrm{x}})^{-1} f\left(\mathrm{x}_{n}\right) .
$$

If we do not know $\overline{\mathrm{x}}$, then we might be able to find a good approximation of $D f(\overline{\mathrm{x}})^{-1}$ that we can use in ϕ to determine $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$.
Lemma 7.3.11. For a Banach space $(X,\|\cdot\|)$ suppose that $g: X \rightarrow \mathscr{B}(X)$ is continuous. For $\overline{\mathrm{x}} \in X$, if $g(\overline{\mathrm{x}})$ has bounded inverse, then there exists a $\delta>0$ such that for all $\mathrm{x} \in B(\overline{\mathrm{x}}, \delta)$ there holds

$$
\left\|g(\mathrm{x})^{-1}\right\|<2\left\|g(\overline{\mathrm{x}})^{-1}\right\| .
$$

Proof. Proposition 5.7.7 (from Subsection 5.7.4 that we skipped) states that the function $A \rightarrow A^{-1}$ on

$$
\mathrm{GL}(X)=\left\{A \in \mathscr{B}(X): A^{-1} \text { exists and belongs to } \mathscr{B}(X)\right\}
$$

is a continuous function.
Since $g(\overline{\mathrm{x}})$ has bounded inverse, i.e., $g(\overline{\mathrm{x}}) \in \mathrm{GL}(X)$, the continuity of $g: X \rightarrow \mathscr{B}(X)$ at $\overline{\mathrm{x}}$ implies for $\epsilon=\left\|g(\overline{\mathrm{x}})^{-1}\right\|$ the existence of $\delta>0$ such that for all $\mathrm{x} \in B(\overline{\mathrm{x}}, \delta)$ there holds

$$
\left\|g(\mathrm{x})^{-1}-g(\overline{\mathrm{x}})^{-1}\right\|<\epsilon
$$

Thus

$$
\begin{aligned}
\left\|g(\mathrm{x})^{-1}\right\| & =\left\|g(\mathrm{x})^{-1}-g(\overline{\mathrm{x}})^{-1}+g(\overline{\mathrm{x}})^{-1}\right\| \\
& \leq\left\|g(\mathrm{x})^{-1}-g(\overline{\mathrm{x}})^{-1}\right\|+\left\|g(\overline{\mathrm{x}})^{-1}\right\| \\
& <\epsilon+\left\|g(\overline{\mathrm{x}})^{-1}\right\| \\
& =2\left\|g(\overline{\mathrm{x}})^{-1}\right\| .
\end{aligned}
$$

whenever $\mathrm{x} \in B(\overline{\mathrm{x}}, \delta)$.

7.3.4 Newton's Method: Vector Version

We extend the scalar version of Newton's method to the general Banach space setting. Theorem 7.3.12 (Newton's Method-Vector Version. Let $(X,\|\cdot\|)$ be a Banach space and $f: X \rightarrow X$. Suppose there is an open neighbourhood U of $\overline{\mathrm{x}} \in X$ for which $f \in C^{1}(U, X)$ and $f(\overline{\mathrm{x}})=0$. If $D f(\overline{\mathrm{x}})$ has bounded inverse and $D f$ is Lipschitz on U, then for $\mathrm{x}_{0} \in U$ chosen sufficiently close to $\overline{\mathrm{x}}$, the sequence $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ defined iteratively by

$$
\mathrm{x}_{n+1}=\mathrm{x}_{n}-D f\left(\mathrm{x}_{n}\right)^{-1} f\left(\mathrm{x}_{n}\right)
$$

converges quadratically to $\overline{\mathrm{x}}$.
Proof. The assumed Lipschitz of $D f$ on U implies the continuity if $D f$ on U.
By Lemma 7.3.11 there exists $\delta>0$ such that $B(\overline{\mathrm{x}}, \delta) \subset U$ and for all $\mathrm{x} \in B(\overline{\mathrm{x}}, \delta)$ there holds

$$
\left\|D f(\mathrm{x})^{-1}\right\|<2\left\|D f(\overline{\mathrm{x}})^{-1}\right\| .
$$

For $\mathrm{x}_{0} \in B(\overline{\mathrm{x}}, \delta)$, form the sequence $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ by

$$
\mathrm{x}_{n+1}=\mathrm{x}_{n}-D f\left(\mathrm{x}_{n}\right)^{-1} f\left(\mathrm{x}_{n}\right) .
$$

By the Integral Mean Value Theorem (which is the first-order Taylor expansion) we have

$$
\begin{aligned}
f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}}) & =\int_{0}^{1} D f\left(\overline{\mathrm{x}}+t\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right)\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right) d t \\
& =D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)+\int_{0}^{1}\left(D f\left(\overline{\mathrm{x}}+t\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right)-D f(\overline{\mathrm{x}})\right)\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right) d t
\end{aligned}
$$

This gives

$$
f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}})-D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)=\int_{0}^{1}\left(D f\left(\overline{\mathrm{x}}+t\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right)-D f(\overline{\mathrm{x}})\right)\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right) d t
$$

Again by the assumed Lipschitz of $D f$ on U, there is $k>0$ such that for all $\mathrm{x}, \mathrm{y} \in U$ there holds

$$
\|D f(\mathrm{x})-D f(\mathrm{y})\| \leq k\|\mathrm{x}-\mathrm{y}\| .
$$

Applying this gives

$$
\begin{aligned}
& \left\|f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}})-D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right\| \\
& \quad \leq \int_{0}^{1}\left\|\left(D f\left(\overline{\mathrm{x}}+t\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right)-D f(\overline{\mathrm{x}})\right)\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right\| d t \\
& \quad \leq \int_{0}^{1}\left\|D f\left(\overline{\mathrm{x}}+t\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right)-D f(\overline{\mathrm{x}})\right\|\left\|\mathrm{x}_{n}-\overline{\mathrm{x}}\right\| d t \\
& \quad \leq \int_{0}^{1} k\left\|t\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right\|\left\|\mathrm{x}_{n}-\overline{\mathrm{x}}\right\| d t \\
& \quad=\int_{0}^{1} k t\left\|\mathrm{x}_{n}-\overline{\mathrm{x}}\right\|\left\|\mathrm{x}_{n}-\overline{\mathrm{x}}\right\| d t \\
& \quad=k\left\|\mathrm{x}_{n}-\overline{\mathrm{x}}\right\|^{2} \int_{0}^{1} t d t \\
& \quad=\frac{k}{2}\left\|\mathrm{x}_{n}-\overline{\mathrm{x}}\right\|^{2} .
\end{aligned}
$$

From the inductive definition of $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ and $f(\overline{\mathrm{x}})=0$ we have

$$
\begin{aligned}
\mathrm{x}_{n+1}-\overline{\mathrm{x}}= & \mathrm{x}_{n}-D f\left(\mathrm{x}_{n}\right)^{-1} f\left(\mathrm{x}_{n}\right)-\overline{\mathrm{x}} \\
= & \mathrm{x}_{n}-D f\left(\mathrm{x}_{n}\right)^{-1} f\left(\mathrm{x}_{n}\right)-\overline{\mathrm{x}}+D f\left(\mathrm{x}_{n}\right)^{-1} f(\overline{\mathrm{x}}) \\
= & \mathrm{x}_{n}-\overline{\mathrm{x}}-D f\left(\mathrm{x}_{n}\right)^{-1}\left(f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}})\right) \\
= & \mathrm{x}_{n}-\overline{\mathrm{x}}-D f\left(\mathrm{x}_{n}\right)^{-1}\left(D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)+f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}})-D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right) \\
= & D f\left(\mathrm{x}_{n}\right)^{-1} D f\left(\mathrm{x}_{n}\right)\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right) \\
& \quad-D f\left(\mathrm{x}_{n}\right)^{-1}\left(D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)+f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}})-D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right) \\
= & D f\left(\mathrm{x}_{n}\right)^{-1}\left(D f\left(\mathrm{x}_{n}\right)-D f(\overline{\mathrm{x}})\right)\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right) \\
& \quad-D f\left(\mathrm{x}_{n}\right)^{-1}\left(f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}})-D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right) .
\end{aligned}
$$

Using the triangle inequality and the estimates above we have

$$
\begin{aligned}
\epsilon_{n+1}= & \left\|x_{n+1}-\overline{\mathrm{x}}\right\| \\
\leq & \left\|D f\left(\mathrm{x}_{n}\right)^{-1}\left(D f\left(\mathrm{x}_{n}\right)-D f(\overline{\mathrm{x}})\right)\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right\| \\
& +\left\|D f\left(\mathrm{x}_{n}\right)^{-1}\left(f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}})-D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right)\right\| \\
\leq & \left\|D f\left(\mathrm{x}_{n}\right)^{-1}\right\|\left\|D f\left(\mathrm{x}_{n}\right)-D f(\overline{\mathrm{x}})\right\|\left\|\mathrm{x}_{n}-\overline{\mathrm{x}}\right\| \\
& \left.+\left\|D f\left(\mathrm{x}_{n}\right)^{-1}\right\| \| f\left(\mathrm{x}_{n}\right)-f(\overline{\mathrm{x}})-D f(\overline{\mathrm{x}})\left(\mathrm{x}_{n}-\overline{\mathrm{x}}\right)\right] \| \\
< & 2 k\left\|D f(\overline{\mathrm{x}})^{-1}\right\|\left\|\bar{x}_{n}-\overline{\mathrm{x}}\right\|^{2}+k\left\|D f(\overline{\mathrm{x}})^{-1}\right\|\left\|\bar{x}_{n}-\overline{\mathrm{x}}\right\|^{2} \\
= & 3 k\left\|D f(\overline{\mathrm{x}})^{-1}\right\| \epsilon_{n}^{2} .
\end{aligned}
$$

With $M=3 k\left\|D f(\overline{\mathrm{x}})^{-1}\right\|$ we have obtained $\epsilon_{n+1} \leq M \epsilon_{n}^{2}$.

Remark 7.3.13. There is a way to know whether the initial guess x_{0} is close enough to $\overline{\mathrm{x}}$ so that the sequence $\left(x_{n}\right)_{n=0}^{\infty}$ converges to $\overline{\mathrm{x}}$.
The Newton-Kantorovich Theorem, which generalizes Lemma 7.3.2, states that, under the hypothesis of Theorem 7.3.12, if

$$
k\left\|f\left(\mathrm{x}_{0}\right)\right\|\left\|D f\left(\mathrm{x}_{0}\right)^{-1}\right\|^{2} \leq \frac{1}{2}
$$

where k is the Lipschitz constant of $D f: U \rightarrow \mathscr{B}(X)$, then x_{0} is close enough.
Example (in lieu of 7.3.14). We illustrate the use of the Newton-Kantorovich Theorem for the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y)=\left[\begin{array}{c}
x^{2}-y \\
x+y-1
\end{array}\right]
$$

This function has a zero $\overline{\mathrm{x}}$ in the first quadrant where the curves $x^{2}-y=0$ and $x+y-1=$ 0 intersect. See the following graph.

A starting guess for Newton's method is $\mathrm{x}_{0}=\left[\begin{array}{ll}1 / 2 & 1 / 2\end{array}\right]^{\mathrm{T}}$. Using the ∞-norm on \mathbb{R}^{2} we have

$$
\left\|f\left(\mathrm{x}_{0}\right)\right\|_{\infty}=\left\|\left[\begin{array}{c}
-1 / 4 \\
0
\end{array}\right]\right\|_{\infty}=\frac{1}{4}
$$

Since

$$
D f(x, y)=\left[\begin{array}{cc}
2 x & -1 \\
1 & 1
\end{array}\right]
$$

we have

$$
D f(x, y)^{-1}=\frac{1}{2 x+1}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2 x
\end{array}\right]
$$

This gives

$$
D f\left(\mathrm{x}_{0}\right)^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]
$$

for which (by Theorem 3.5.20) we have

$$
\left\|D f\left(\mathrm{x}_{0}\right)^{-1}\right\|_{\infty}=1
$$

It remains to find the value of k in the Lipschitz condition for $D f$ on some neighbourhood U of $\overline{\mathrm{x}}$.

We use second derivative of f to get k.
By the Integral Mean Value Theorem we have

$$
\|D f(\mathrm{x})-D f(\mathrm{y})\|_{\infty} \leq \sup _{\mathrm{c} \in \ell(\mathrm{y}, \mathrm{x})}\left\|D^{2} f(\mathrm{c})\right\|\|\mathrm{x}-\mathrm{y}\|_{\infty}
$$

With $f=\left(f_{1}, f_{2}\right)$ we have

$$
D f_{1}(x, y)=\left[\begin{array}{ll}
2 x & 1
\end{array}\right] \text { and } D f_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] .
$$

Thus

$$
D^{2} f_{1}(x, y)=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \text { and } D^{2} f_{2}(x, y)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

With $D^{2} f(x, y) \in \mathscr{B}\left(\mathbb{R}^{2}, \mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ and $\mathrm{h}_{1}, \mathrm{~h}_{2} \in \mathbb{R}^{2}$, we have

$$
D^{2} f(x, y)\left(\mathrm{h}_{1}, \mathrm{~h}_{2}\right)=\left[\begin{array}{l}
\mathrm{h}_{1}^{\mathrm{T}} D^{2} f_{1}(x, y) \mathrm{h}_{2} \\
\mathrm{~h}_{1} D^{2} f_{2}(x, y) \mathrm{h}_{2}
\end{array}\right] .
$$

The second entry here is always $0 \in \mathbb{R}$, while for the first entry, with

$$
\mathrm{h}_{1}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \text { and } \mathrm{h}_{2}=\left[\begin{array}{l}
c \\
d
\end{array}\right],
$$

we have

$$
\mathrm{h}_{1}^{\mathrm{T}} D^{2} f_{1}(x, y) \mathrm{h}_{2}=2 a c \in \mathbb{R} .
$$

From this we get for $h_{1}, h_{2} \neq 0$ that

$$
\frac{\left\|\mathrm{h}_{1}^{\mathrm{T}} D^{2} f(x, y) \mathrm{h}_{2}\right\|_{\infty}}{\left\|\mathrm{h}_{1}\right\|_{\infty}\left\|\mathrm{h}_{2}\right\|_{\infty}}=\frac{2|a c|}{\sup \{|a|,|b|\} \sup \{|c|,|d|\}} \leq 2
$$

This implies for all (x, y) that

$$
\left\|D^{2} f(x, y)\right\| \leq 2
$$

Thus by the Integral Mean Value Theorem we have for all $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{2}$ that

$$
\|D f(\mathrm{x})-D f(\mathrm{y})\| \leq 2\|\mathrm{x}-\mathrm{y}\|_{\infty}
$$

and so the Lipschitz constant for $D f$ on $U=\mathbb{R}^{2}$ is $k=2$.
The initial guess of $\mathrm{x}_{0}=(1 / 2,1 / 2)$ satisfies the Newton-Kantorovich condition because

$$
k\left\|f\left(\mathrm{x}_{0}\right)\right\|\left\|D f\left(\mathrm{x}_{0}\right)^{-1}\right\|^{2}=2(1 / 4)(1)^{2}=\frac{1}{2} .
$$

The sequence of successive approximations $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ defined by

$$
\mathrm{x}_{n+1}=\mathrm{x}_{n}-D f\left(\mathrm{x}_{n}\right)^{-1} f\left(\mathrm{x}_{n}\right)
$$

therefore converges quadratically to the root of f in the first quadrant.
Here

$$
\begin{aligned}
\mathrm{x}_{1} & =\mathrm{x}_{0}-D f\left(\mathrm{x}_{0}\right)^{-1} f\left(\mathrm{x}_{0}\right) \\
& =\left[\begin{array}{ll}
1 / 2 \\
1 / 2
\end{array}\right]-\frac{1}{2(1 / 2)+1}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 / 4 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 / 4 \\
1 / 4
\end{array}\right] \\
& =\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]+\left[\begin{array}{c}
1 / 8 \\
-1 / 8
\end{array}\right] \\
& =\left[\begin{array}{l}
5 / 8 \\
3 / 8
\end{array}\right]=\left[\begin{array}{l}
0.625 \\
0.375
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{x}_{2} & =\left[\begin{array}{l}
5 / 8 \\
3 / 8
\end{array}\right]-\frac{1}{2(5 / 8)+1}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2(5 / 8)
\end{array}\right]\left[\begin{array}{c}
(5 / 8)^{2}-3 / 8 \\
5 / 8+3 / 8-1
\end{array}\right] \\
& =\left[\begin{array}{l}
5 / 8 \\
3 / 8
\end{array}\right]-\frac{4}{9}\left[\begin{array}{cc}
1 & 1 \\
-1 & 5 / 4
\end{array}\right]\left[\begin{array}{c}
1 / 64 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
5 / 8 \\
3 / 8
\end{array}\right]-\frac{4}{9}\left[\begin{array}{c}
1 / 64 \\
-1 / 64
\end{array}\right] \\
& =\left[\begin{array}{l}
5 / 8-1 / 144 \\
3 / 8+1 / 144
\end{array}\right]=\left[\begin{array}{c}
0.618055556 \\
0.3819444
\end{array}\right] .
\end{aligned}
$$

We can explicitly compute the limit $\overline{\mathrm{x}}=(\bar{x}, \bar{y})$ of $\left(\mathrm{x}_{n}\right)_{n=0}^{\infty}$ because we can algebraically solve the system of equations

$$
\begin{aligned}
& x^{2}-y=0 \\
& x+y-1=0
\end{aligned}
$$

The second gives $-y=x-1$ and substitution of this into the first gives the quadratic

$$
x^{2}+x-1=0
$$

By the quadratic formula we have

$$
\bar{x}=\frac{-1+\sqrt{5}}{2} \cong 0.618033988749895
$$

so that by $y=1-x$ we have

$$
\bar{y}=\frac{3-\sqrt{5}}{2} \cong 0.381966011250105
$$

The iterate x_{2} has four correct digits in both entries!

