
Math 346 Lecture #12
8.1 Multivariable Integration

We extend the construction of the regulated integral for functions of a single variable to
functions of several variables by defining the integral for step functions and then applying
the continuous linear extension theorem.

8.1.1 Multivariable Step Functions

Definition 8.1.1. For a = (a1, . . . , an) and b = (b1, . . . , bn) in Rn with ai ≤ bi for all
i = 1, . . . , n, the closed n-interval [a, b] is defined to be

[a1, b1]× · · · × [an, bn] ⊂ Rn.

The closed n-interval [a, b] is a compact box or parallelepiped in Rn.

Definition 8.1.2. A subdivision P of a closed n-interval [a, b] consists, for each i =
1, . . . , n, of a subdivsion

Pi = {t(0)i = ai < t
(1)
i < · · · < t

(ki−1)
i < t

(ki)
i = bi}

of the closed interval [ai, bi] for some ki ∈ N.

Definition 8.1.3. A subdivision of an n-interval [a, b] gives a decomposition of [a, b]
into a disjoint union of an partially open subinterval and closed subinterval as follows.
Each t

(j)
i with 0 < j < ki defines a hyperplane

H
(j)
i = {x ∈ Rn : xi = t

(j)
i }

in Rn which divides [a, b] into two regions; a partially open subinterval

[a1, b1]× · · · × [ai−1, bi−1]× [ai, t
(j)
i )× [ai+1, bi+1]× · · · × [an, bn],

and a closed subinterval

[a1, b1]× · · · × [ai−1, bi−1]× [t
(j)
i , bi]× [ai+1, bi+1]× · · · × [an, bn].

(Sketch the picture in R2.)

Repeating this process for each resulting subinterval (either partially open or closed) and
for each hyperplane, we get a decomposition of [a, b] into a pairwise disjoint union of
subintervals.

We account for each these subintervals RI through an n-tuple I = (i1, . . . , in) where
ij ∈ {1, . . . , kj}, which is to say that each subinterval is associated with the corner whose
coordinates are

(ti11 , . . . , t
in
n ).

(In R2, this point is the top right corner.)

This association gives a bijection from

{1, . . . , k1} × · · · × {1, . . . , kn}



to P by which we identify (i1, . . . , in) with (ti11 , . . . , t
in
n ).

All except one of the subintervals RI are partially open, i.e., have a least one face missing;
the exception is the closed subinterval RI for I = (k1, . . . , kn).

We thus have a pairwise disjoint union of [a, b] into subintervals:

[a, b] =
⋃
I∈P

RI .

We assume throughout the remainder of this lecture that (X, ‖ · ‖) is a Banach space
over R.

Definition 8.1.4. For a subset E of Rn the indicator or characteristic function on E is

χE(x) =

{
1 if x ∈ E,
0 if x 6∈ E.

A function s : [a, b] → X is a step function if there exists a subdivision P of [a, b] and
elements xI ∈ X for each I ∈P such that

s(x) =
∑
I∈P

xIχRI
(x).

More generally we consider a function s : E → X to be a step function if it is zero outside
some interval [a, b] and the restriction of s to [a, b] is a step function on [a, b].

Let S([a, b], X) denote the collection of all step functions s : [a, b]→ X. This collection
is nonempty because the zero function is a step function.

Proposition 8.1.5. The collection S([a, b], X) is a subspace of the Banach space,
(L∞([a, b], X), ‖ · ‖∞), of bounded functions from [a, b] to X.

The proof of this is nearly identical to the single variable counterpart (see Proposition
5.10.3).

8.1.2 Multivariable, Banach-Valued Integration

Every n-interval has a naturally defined n-dimensional volume or “measure.”

Definition 8.1.6. For each j ∈ {1, . . . , n} let Aj be an interval of one of the forms
(aj, bj), [aj, bj), (aj, bj], or [aj, bj] for aj ≤ bj and aj, bj ∈ R. We define the measure of
R = A1 × · · · × An to be

λ(R) =
n∏

j=1

(bj − aj).

Each R with nonempty interior will have a positive measure, while any R with some
aj = bj will have zero measure.

Definition 8.1.7. The integral of a step function

s(x) =
∑
I∈P

xIχRI
(x)



in S([a, b], X) is

I (s) =

∫
[a,b]

s =
∑
I∈P

xIλ(RI),

a finite linear combination in the Banach space X.

Proposition 8.1.8. For any n-interval [a, b] ⊂ Rn (which n-interval is compact by
definition), the integral operator I : S([a, b], X)→ X is a bounded linear transformation
where

‖I ‖ = λ([a, b]).

The proof of this is HW (Exercise 8.2). [Notice that there is a typo in the book: λ([b−a])
should be λ([a, b]). This typo appears again in Theorem 8.1.9.]

Note. Recall that we showed in the lecture note for Section 5.7 that the closure of a
subspace is a subspace (a result not mentioned nor proved in the book).

Theorem 8.1.9 (Multivariable, Banach-Valued Integral). The bounded linear
transformation I : S([a, b], X) → X extends uniquely to a bounded linear transforma-
tion I : S([a, b], X)→ X such that

‖I ‖ = λ([a, b]).

Moreover we have
C([a, b], X) ⊂ S([a, b], X) ⊂ L∞([a, b], X).

The proof of this is HW (Exercise 8.3).

Definition 8.1.10. For any compact n-interval [a, b] we denote the set S([a, b], X) by
R([a, b], X) which means the closed subspace of regulated-integrable functions.

For f ∈ R([a, b], X) we call the the bounded linear transformation I the integral of f
and write ∫

[a,b]

f = I (f).

Proposition 8.1.11. For f, g ∈ R([a, b], X), the following hold.

(i)

∥∥∥∥∫
[a,b]

f

∥∥∥∥ ≤ λ([a, b]) sup
t∈[a,b]

‖f(t)‖.

(ii) For a sequence (fn)∞n=1 in R([a, b], X) converging uniformly to f there holds

lim
n→∞

∫
[a,b]

fn =

∫
[a,b]

lim
n→∞

fn =

∫
[a,b]

f.

(iii) With ‖f‖ denoting the function t→ ‖f(t)‖ from [a, b] to R, there holds∥∥∥∥∫
[a,b]

f

∥∥∥∥ ≤ ∫
[a,b]

‖f‖.



(iv) If ‖f(t)‖ ≤ ‖g(t)‖ for all t ∈ [a, b], then∫
[a,b]

‖f‖ ≤
∫
[a,b]

‖g‖.

Proof. Parts (i) and (ii) are HW (Exercise 8.5).

(iii) For a step function

s(t) =
∑
I∈P

xIχRI
(t) ∈ R([a, b], X)

we have by the pairwise disjointness of the RI that

‖s(t)‖ =
∑
I∈P

‖xI‖χRI
(t) ∈ R([a, b],R).

Since s is a finite sum, we have by the triangle inequality that∥∥∥∥∫
[a,b]

s

∥∥∥∥ =

∥∥∥∥∥∑
I∈P

xIλ(RI)

∥∥∥∥∥ ≤∑
I∈P

‖xI‖λ(RI) =

∫
[a,b]

‖s‖.

For any f ∈ R([a, b], X) there is a sequence of step functions (sn)∞n=1 such that sn → f
uniformly on [a, b].

This implies by the continuity of the norm and part (ii) that∥∥∥∥∫
[a,b]

f

∥∥∥∥ =

∥∥∥∥∫
[a,b]

lim
n→∞

sn

∥∥∥∥
= lim

n→∞

∥∥∥∥∫
[a,b]

sn

∥∥∥∥
≤ lim

n→∞

∫
[a,b]

‖sn‖

=

∫
[a,b]

∥∥∥ lim
n→∞

sn

∥∥∥
=

∫
[a,b]

‖f‖ .

(iv) Suppose h ∈ R([a, b],R) satisfies h(t) ≥ 0 for all t ∈ [a, b].

There is a sequence of step functions (sn)∞n=1 that converges uniformly to f on [a, b]: for
ε > 0 there is N ∈ N such that for all n ≥ N there holds

‖sn − h‖∞ ≤
ε

λ([a, b])
.

Since h(t) ≥ 0 for all t ∈ [a, b], the uniform convergence implies for all n ≥ N that

ε

λ([a, b])
≥ |h(t)− sn(t)| ≥ h(t)− sn(t) ≥ −sn(t) for all t ∈ [a, b].



This implies for all n ≥ N that

sn(t) ≥ − ε

λ([a, b])
for all t ∈ [a, b].

Consequently, as

sn(t) =
∑
I∈P

xIχRI
(t)

for xI ∈ R, it follows for all I ∈P that

xI ≥ −
ε

λ([a, b])
.

Hence for each n ≥ N we have∫
[a,b]

sn =
∑
I∈P

xIλ(RI) ≥ −
∑
I∈P

ελ(RI)

λ([a, b])

= − ε

λ([a, b])

∑
I∈P

λ(RI)

= − ε

λ([a, b])
λ([a, b])

= −ε.

By part (ii) we have for all n ≥ N that∫
[a,b]

h = lim
n→∞

∫
[a,b]

sn ≥ −ε.

Since this holds for any ε > 0 we conclude that∫
[a,b]

h ≥ 0.

By setting h(t) = ‖f(t)‖ − ‖g(t)‖ we obtain the result. �

Remark 8.1.12. The Riemann construction of the integral defines a bounded linear
transformation on R([a, b], X) that agrees with the regulated integral on step functions.
Hence by the uniqueness part of the Continuous Linear Extension Theorem, the Riemann
integral and the regulated integral agree on R([a, b], X).

8.1.3 Integration over subsets of [a, b]

To integrate functions defined on bounded subsets E of Rn other than closed n-intervals,
we extend the functions by zero outside of E.

Definition 8.1.13. For any function f : E → X, the extension of f by zero is the
function

fχE(z) =

{
f(z) if z ∈ E,
0 if z 6∈ E.



Since E is bounded in Rn, its closure is compact, and there is a compact n-interval [a, b]
that contains E.

We could then define the integral of f to be∫
E

f =

∫
[a,b]

fχE.

An immediate problem with doing this is that we don’t know beforehand if fχE belongs
to R([a, b], X).

It is even possible that the indicator function χE may not be integrable.

Unexample 8.1.14. For an compact 1-interval [a, b] with a < b, the singleton set
E = {p} for p ∈ [a, b) has χE not integrable.

This follows because every step function s : [a, b] → R is right continuous, meaning for
every t0 ∈ [a, b) there holds

lim
t→t+0

s(t) = s(t0).

By Exercise 8.4 (a HW problem) the uniform limit of right-continuous functions is a
right-continuous function.

But the indicator function χE is not right-continuous at t0 = p, and therefore is not
integrable.

Overcoming this and other deficiencies of the regulated integral is discussed in the next
section.


