
Math 346 Lecture #14
8.3 Measure Zero and Measurability

Our notion of volume or measure λ gives the same value for the compact n-interval [a, b]
and the open n-interval

(a, b) = (a1, b1)× · · · × (an, bn).

This says that the missing faces of the open n-interval have measure zero.

8.3.1 Sets of Measure Zero

There are some basic properties we expect of the measure λ for subsets of Rn on which
it is defined.

1. For A and B in Rn, if B ⊂ A then λ(B) ≤ λ(A). (This property is called mono-
tonicity.) This says that subsets of sets of measure zero have measure zero. Mono-
tonicity of λ suggests that if (Ck)∞k=1 is a sequence of sets for which Ck+1 ⊂ Ck and
λ(Ck)→ 0 as k →∞, then

λ

(
∞⋂
k=1

Ck

)
= lim

k→∞
λ(Ck) = 0,

which expresses the “continuity” of λ on decreasing sequences of sets whose mea-
sures approach 0.

2. For A and B in Rn, not necessarily disjoint, there holds

λ(A ∪B) ≤ λ(A) + λ(B).

(This property, which by induction extends to finite unions, is called finite subad-
ditivity.) This suggest that if (Ck)∞k=1 is a sequence of sets, then

λ

(
∞⋃
k=1

Ck

)
≤

∞∑
k=1

λ(Ck),

a property called countable subadditivity. [What would happen if the sets Ck

were pairwise disjoint? We could replace ≤ with = in the countable subadditivity,
giving a property called countably additivity which is the key defining property
of a measure. Countable additivity implies finite additivity, i.e., if A and B are
disjoint, then λ(A ∪B) = λ(A) + λ(B).]

3. The empty set ∅ is a subset of Rn. It should have measure zero, i.e., λ(∅) = 0.
(This property is called finiteness of the measure on at least one set, i.e., there
exists a set A for which λ(A) <∞.)

So far we only know how to compute the measure of n-intervals, but the properties listed
above suggest how to define sets of measure zero using compact, partially open, or open
n-intervals.

Definition 8.3.1. A set A ⊂ Rn has measure zero if for any ε > 0 there exists a
countable collection of n-intervals (Ik)∞n=1 such that

A ⊂
∞⋃
k=1

Ik and
∞∑
k=1

λ(Ik) < ε.



Proposition 8.3.2. The following hold.

(i) Any subset of a set of measure zero has measure zero.

(ii) A singleton subset, i.e., {x} for x ∈ Rn, has measure zero.

(iii) A countable union of sets of measure zero has measure zero.

Proof. (i) Suppose A is a set of measure zero.

Then for all ε > 0 there exists a countable collection of n-intervals (Ik)∞k=1 such that

A ⊂
∞⋃
k=1

Ik and
∞∑
k=1

λ(Ik) < ε.

For a subset B of A we then have

B ⊂
∞⋃
k=1

Ik and
∞∑
k=1

λ(Ik) < ε.

This says that B has measure zero.

(ii) This is HW (Exercise 8.11).

(iii) Suppose that (Ck)∞k=1 is a countable collection of sets of measure zero.

For each fixed k we have for ε > 0 the existence of a countable collection of n-intervals
(Ij,k)∞j=1 for which

Ck ⊂
∞⋃
j=1

Ij,k and
∞∑
j=1

λ(Ij,k) <
ε

2k
.

The collection (Ij,k)∞j,k=1 is a collection collection of n-intervals for which

∞⋃
k=1

Ck ⊂
∞⋃
k=1

(
∞⋃
j=1

Ij,k

)
and

∞∑
k=1

∞∑
j=1

λ(Ij,k) <
∞∑
k=1

ε

2k

=
ε

2

∞∑
k=1

1

2k−1

=
ε

2

∞∑
k=0

1

2k

=
ε

2

(
1

1− 1/2

)
= ε,

where we have used the geometric series with r = 1/2.

Thus the union of the countable many sets of measure zero has measure zero. �



Example 8.3.3. The Cantor middle thirds set C ⊂ [0, 1] has measure zero.

The construction of C starts with C0 = [0, 1], removes the open middle third subinterval
of C0 to obtain C1 = [0, 1/3] ∪ [2/3, 1] ⊂ C0.

The open middle thirds of the two subintervals in C1 are removed to obtain

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1] ⊂ C1.

Continuing this pattern by induction we obtain Ck+1 ⊂ Ck where Ck consists of 2k

pairwise disjoint compact subintervals Ij,k, j = 1, . . . , 2k, each of which has length (1/3)k.

To apply the definition of measure zero, we declare Ij,k = ∅ for all j > 2k.

The Cantor middle thirds set,

C =
∞⋂
k=0

Ck,

then has the properties of

C ⊂ Ck =
∞⋃
j=1

Ij,k and
∞∑
j=1

λ(Ij,k) = 2k

(
1

3

)k

=

(
2

3

)k

.

Since (2/3)k goes to 0 as k →∞, we conclude that C is a set of measure zero.

Definition 8.3.4. For a nonempty A ⊂ Rn, two function f, g : A → R are said to be
equal almost everywhere on A, written f = g a.e. on A if the set

{t ∈ A : f(t) 6= g(t)}

has measure zero.

Example (in lieu of 8.3.5). Consider the functions f, g : [0, 1] → R defined by
f(t) = 0 for all t ∈ [0, 1] and

g(t) =

{
1 if t ∈ C,
0 if t ∈ [0, 1] \ C,

where C is the Cantor middle thirds set.

The functions f and g differ on C which has measure zero, so f = g a.e. on [0, 1].

Proposition 8.3.6. For a nonempty A ⊂ Rn, the relation = a.e. on A is an equivalence
relation on the set of all functions from A to R.

The proof of this when A = [a, b] ⊂ Rn is HW (Exercise 8.12).

Definition 8.3.7. For a nonempty A ⊂ Rn, we say that a sequence of functions (fk)∞k=1

from A to R converges almost everywhere on A if the set

{t ∈ A : (fk(t))∞k=1 does not converge}

has measure zero. If for almost all t ∈ A the sequence (fk(t))∞n=1 converges to f(t), then
we write fk → f a.e. on A.



Note. Convergence almost everywhere is about pointwise convergence. It does not
depend on the norm on the space of functions in which the sequence is.

Example 8.3.8. For the functions fn : [0, 1]→ R defined by

fn(t) = nχ[0,1/n](t)

the sequence (fn(0))∞n=1 does not converge because fn(0) = n→∞.

However for all t ∈ (0, 1], the sequence (fn(t))∞n=1 converges to 0 because eventually
fn(t) = 0 for sufficient large n, i.e., for fixed t ∈ (0, 1] there exists N ∈ N such that for
all n ≥ N there holds 1/n < t, so that for all n ≥ N there holds fn(t) = 0.

The sequence (fn)∞n=1 converges almost everywhere to the zero function on [0, 1].

8.3.2 Measurability

The regulated integral applies to functions in R([a, b],R), the closure (which is the
completion) of S([a, b],R) with respect to the L∞-norm, i.e., functions that are the
uniform limits of step functions.

The Daniell-Lebesgue integral applies to functions in L1([a, b],R), the completion of
S([a, b],R) with respect to the L1-norm, i.e., functions that are equal almost everywhere
to the pointwise limits of L1-Cauchy sequences of step functions.

In both of these situations the functions we obtain are pointwise limits a.e. on [a, b] of
step functions. This motivates the following definitions.

Definition 8.3.9. A function f : [a, b] → R is called measurable if there exists a
sequence (sk)∞k=1 of step functions such that sk → f a.e. on [a, b].

A set A ⊂ [a, b] is called measurable if its indicator or characteristic function χA is
measurable.

Note 8.3.13. Measurable sets include compact n-intervals, bounded open sets, bounded
closed sets, and countable unions and intersections of bounded open or bounded closed
sets. For example the half-open half-closed interval (0, 1] is measurable because it is the
countable union of closed intervals:

(0, 1] =
∞⋃
k=1

[1/k, 0].

Said in another way, the characteristic function χ(0,1] is the pointwise limit of the sequence
of step functions sk = χ[1/k,0].

Definition 8.3.10. Suppose a nonempty subset A ⊂ [a, b] is measurable. If f : A→ R
satisfies fχA ∈ L1([a, b],R), then we write∫

A

f =

∫
[a,b]

fχA.

We define L1(A,R) to be the collection of functions f : A → R for which fχA ∈
L1([a, b],R).



We show through the next two results that the integral of f ∈ L1(A,R) is independent
of the compact n-interval [a, b] that contains the measurable A.

Proposition 8.3.11. Suppose the measurable A is a subset of the compact n-intervals
[a, b] and [c, d] where [a, b] ⊂ [c, d]. Then fχA ∈ L1([a, b],R) if and only if fχA ∈
L1([c, d],R). Moreover there holds∫

[a,b]

fχA =

∫
[c,d]

fχA.

Proof. Suppose fχA ∈ L1([a, b],R).

Then there is a sequence (sn)∞n=1 of step functions on [a, b] such that (sn)∞n=1 is L1-Cauchy
on [a, b] and sn → fχA a.e. on [a, b].

Extending every sn by zero to [c, d] gives step functions tn that satisfy tn → fχA a.e. on
[c, d].

From the definition of the integral of a step function (the finite linear combination in R)
we have for all m,n ∈ N that∫

[c,d]

|tn − tm| =
∫
[a,b]

|sn − sm| and

∫
[c,d]

tn =

∫
[a,b]

sn.

The first of these implies that (tn)∞n=1 is L1-Cauchy on [c, d], so that fχA = lim tn belongs
to L1([c, d],R).

The second implies that ∫
[c,d]

fχA =

∫
[a,b]

fχA.

Now suppose that fχA ∈ L1(c, d],R).

Then there is a sequence (tn)∞n=1 of step functions on [c, d] such that (tn)∞n=1 is L1-Cauchy
on [c, d] and tn → fχA a.e. on [c, d].

The functions sn = tnχ[a,b] are step functions on [a, b].

We show that (sn)∞n=1 is L1-Cauchy on [a, b].

Since (tn)∞n=1 is L1-Cauchy, for ε > 0 there exists N ∈ N such that for all n,m ≥ N there
holds (on [c, d])

‖tn − tm‖1 < ε.

Computing the L1-norm of sn − sm on [a, b] we have for all n,m ≥ N that∫
[a,b]

|sn − sm| =
∫
[a,b]

|tn − tm|χ[a,b] ≤
∫
[c,d]

|tn − tm| < ε.

Thus (sn)∞n=1 is L1-Cauchy on [a, b].

Since tn → fχA a.e. on [c, d] and A ⊂ [a, b] ⊂ [c, d], we have that

sn = tnχ[a,b] → fχAχ[a,b] = fχA.



Thus fχA ∈ L1([a, b],R).

Using tn → fχA on [c, d] and sn = tnχ[a,b] → fχA on [a, b], we have∫
[a,b]

fχA = lim
n→∞

∫
[a,b]

sn

= lim
n→∞

∫
[a,b]

tnχ[a,b]

= lim
n→∞

∫
[c,d]

tnχ[a,b]

=

∫
[c,d]

fχAχ[a,b]

=

∫
[c,d]

fχA.

This completes the proof. �

Corollary 8.3.12. Suppose A is a measurable subset of [c, d] ∩ [c′, d′]. Then fχA ∈
L1([c, d],R) if and only if fχA ∈ L1([c′, d′],R).

Proof. The intersection [c, d] ∩ [c′, d′] is a compact n-interval [a, b].

We have that [a, b] ⊂ [c, d] and [a, b] ⊂ [c′, d′].

We apply Proposition 8.3.11 to these inclusions to obtain that fχA ∈ L1([a, b],R) if and
only if fχA ∈ L1([c, d],R), with ∫

[a,b]

fχA =

∫
[c,d]

fχA,

and fχA ∈ L1([a, b],R) if and only if fχA ∈ L1([c′, d′],R) with∫
[a,b]

fχA =

∫
[c′,d′]

fχA.

This completes the proof. �


