
Math 346 Lecture #15
8.4 Monotone Convergence and Integration on Unbounded Domains

The normed linear space L1([a, b],R) is complete in the L1-norm, which means that any
sequence (fk)∞k=1 in L1([a, b],R) that is L1-Cauchy converges in the L1-norm to a function
f ∈ L1([a, b],R), and by the continuity of the integral as a bounded linear transformation
from L1([a, b],R) to R we have the exchanging of limit and integration,

lim
k→∞

∫
[a,b]

fk =

∫
[a,b]

lim
k→∞

fk =

∫
[a,b]

f.

What can we say about a sequence (fk)∞k=1 in L1([a, b],R) that converges only pointwise
a.e. on [a, b] to f : [a, b]→ R?

1. Does the limit function f belong to L1([a, b],R)?

2. And if the limit function f belongs to L1([a, b],R), does it hold that

lim
k→∞

∫
[a,b]

fk =

∫
[a,b]

lim
k→∞

fk =

∫
[a,b]

f?

The Monotone Convergence Theorem gives sufficient conditions by which these two ques-
tions both have an affirmative answer.

8.4.1 Some Basic Integral Properties

We present without proof (as the proofs are given in Chapter 9) some of the basic
properties of the Daniell-Lebesgue integral.

Definition 8.4.1. For any nonempty set A and any function f : A→ R we define the
positive and negative parts of f to be, respectively,

f+(a) =

{
f(a) if f(a) ≥ 0,

0 if f(a) < 0,
and f−(a) =

{
−f(a) if f(a) < 0,

0 if f(a) ≥ 0.

Note. The positive and negative parts of f satisfy f = f+ − f− and |f | = f+ + f−.

Proposition 8.4.2. For any f, g ∈ L1([a, b],R), the following hold.

(i) If f ≤ g a.e. on [a, b], then ∫
[a,b]

f ≤
∫
[a,b]

g.

(ii)

∣∣∣∣∫
[a,b]

f

∣∣∣∣ ≤ ∫
[a,b]

|f | = ‖f‖1.

(iii) The functions max{f, g}, min{f, g}, f+, f−, and |f | belong to L1([a, b],R).

(iv) For a measurable h : [a, b]→ R, if |h| ∈ L1([a, b],R), then h ∈ L1([a, b],R).

(v) For h : [a, b]→ R measurable, if ‖h‖∞ <∞, then fh ∈ L1([a, b],R) with

‖fh‖1 ≤ ‖h‖∞‖f‖1.



8.4.2 Monotone Convergence

Unfortunately, not every pointwise a.e. convergent sequence of integrable functions con-
verges in the L1-norm, as illustrated next.

Unexample. Consider the sequence of functions

fk(t) =

{
k if 0 ≤ t ≤ 1/k,

1/t if 1/k < t ≤ 1.

For each k the function fk is continuous, so that fk ∈ L1([0, 1],R).

The sequence (fk(t))∞k=1 converges pointwise to f(t) = 1/t for t ∈ (0, 1], and (fk(0))∞k=1

does not converge.

Thus (fk)∞k=1 converges to f a.e. on [0, 1].

But the sequence (fk)∞k=1 is not L1-Cauchy because for m > n we have∫
[0,1]

|fm − fn| =
∫ 1/m

0

(m− n) dt+

∫ 1/n

1/m

(
1

t
− n

)
dt

=
m− n
m

+ log

(
1

n

)
− log

(
1

m

)
− n

(
1

n
− 1

m

)
= 1− n

m
− log n+ logm− 1 +

n

m
= logm− log n,

which can be made arbitrary large when m is much bigger than n.

The limit function f does not belong to L1([0, 1],R) because ‖f‖1 =∞.

Even when a sequence of integrable functions converges pointwise a.e. to an integrable
function, we can not expect that we can exchange the limit and the integral, as illustrated
next.

Unexample (slightly different from 8.4.3). Consider the sequence of functions

fk(t) =

{
2k if t ∈ [0, 2−k),

0 if t ∈ [2−k, 1].

Each fk is a (right-continuous) step function, and thus belongs to L1([0, 1],R).

The sequence (fk(t))∞k=1 converges to f(t) = 0 for t ∈ (0, 1], while (fk(0))∞k=1 diverges.

Thus (fk)∞k=1 converges pointwise a.e. to f on [0, 1], and the limit function f belongs to
L1([0, 1],R).

But for all k there holds ∫
[0,1]

fk = 1,

so that

lim
k→∞

∫
[0,1]

fk = 1,



while ∫
[0,1]

lim
k→∞

fk =

∫
[0,1]

f = 0.

Thus we cannot exchange the limit and the integral for this sequence.

The sequence (fk)∞k=1 is not L1-Cauchy because for l > k we have∫
[0,1]

|fl − fk| =
∫ 1/2l

0

(2l − 2k) +

∫ 1/2k

1/2l
2k

=
2l − 2k

2l
+ 2k

(
1

2k
− 1

2l

)
= 2

(
1− 2k

2l

)
,

which equals 1 when l = k + 1 no matter how large k is.

The two unexamples illustrate what can go wrong with pointwise a.e. convergence and
the Daniell-Lebesgue integral, but also hint at what conditions on the sequence may
guarantee the limit function is L1 and the limit and the integral can be exchanged.

Definition 8.4.4. We say a sequence (fk)∞k=1 on the domain [a, b] and codomain R is
monotone increasing if for all x ∈ [a, b] and all k ∈ N there holds

fk(x) ≤ fk+1(x).

We say that (fk)∞k=1 is almost everywhere monotone increasing, denoted by fk ≤ fk+1

a.e. on [a, b], if for every k ∈ N the set

{x ∈ [a, b] : fk(x) > fk+1(x)}

is a set of measure zero. [Recall that the countable union of sets of measure zero is a set
of measure zero.]

Monotone decreasing and almost everywhere monotone decreasing are defined analo-
gously.

Remarks. The sequence (fk)∞k=1 in the first unexample in monotone increasing but has
the property that

lim
k→∞

∫
[0,1]

fk =∞.

The sequence (fk)∞k=1 in the second unexample has the property that∫
[0,1]

fk ≤ 1 for all k ∈ N,

but is not monotone increasing (as stated in Remark 8.4.6).

Theorem 8.4.5 (Monotone Convergence Theorem). If (fk)∞k=1 ⊂ L1([a, b],R) is
almost everywhere increasing and there exists M ∈ R such that for all k ∈ N there holds∫

[a,b]

fk ≤M,



then (fk)∞k=1 is L1-Cauchy, and hence there exists f ∈ L1([a, b],R) such that

fk → f a.e. on [a, b]

and

lim
k→∞

∫
[a,b]

fk =

∫
[a,b]

lim
k→∞

fk =

∫
[a,b]

f.

The same conclusions hold when (fk)∞k=1 ⊂ L1([a, b],R) is almost everywhere monotone
decreasing and there exists M ∈ R such that∫

[a,b]

fk ≥M for all k ∈ N.

Proof. Proposition 8.4.2 part (i) and the assumed almost everywhere monotone increasing
of (fk)∞k=1 ⊂ L1([a, b],R) imply that for all k ∈ N that∫

[a,b]

fk ≤
∫
[a,b]

fk+1 ≤M.

Thus the sequence of real numbers (∫
[a,b]

fk

)∞
k=1

is monotone increasing and bounded above, and therefore converges to say L ∈ R (by
the completeness of R).

For any ε > 0 there then exists N ∈ N such that for all k ≥ N there holds

0 ≤ L−
∫
[a,b]

fk < ε.

This implies for l > m ≥ N that

‖fl − fm‖1 =

∫
[a,b]

|fl − fm|

=

∫
[a,b]

(fl − fm) [use monotonicity of (fk) here]

=

(
L−

∫
[a,b]

fm

)
−
(
L−

∫
[a,b]

fl

)
≤ L−

∫
[a,b]

fm

< ε.

This shows that (fk)∞k=1 is L1-Cauchy.

This implies the existence of f ∈ L1([a, b],R) such that fk → f a.e. on [a, b], and that

lim
k→∞

∫
[a,b]

fk =

∫
[a,b]

f.



The argument for an almost everywhere decreasing sequence of functions in L1([a, b],R)
whose integrals are bounded below is similar. �

8.4.3 Integration on Unbounded Domains

We use the Monotone Convergence Theorem to justify the extension of integration of
measurable functions on bounded measurable sets to measurable functions on unbounded
measurable sets.

Definitions. A sequence of sets (Ek)∞k=1 is called increasing if Ek ⊂ Ek+1 for all k ∈ N.

A subset A ⊂ Rn (not assumed bounded) is called measurable if there exists an increasing
sequence of bounded measurable sets Ek such that

A =
∞⋃
k=1

Ek.

For a measurable subset A ⊂ Rn (not assumed bounded), a function f : A → R is
measurable if there exists an increasing sequence of bounded measurable sets Ek and
step functions sk defined on compact n-intervals [ak, bk] ⊃ Ek such that A = ∪Ek and
skχEk

→ f pointwise a.e. on A.

Definition 8.4.7. For a measurable A ⊂ Rn (not assumed bounded), and a nonnegative
measurable f : A→ R we say f is integrable on A if there exists an increasing sequence of
bounded measurable sets (Ek)∞k=1 and M ∈ R such that A = ∪Ek, each fχEk

is integrable
on some [ak, bk] ⊃ Ek, and∫

Ek

f =

∫
[ak,bk]

fχEk
≤M for all k ∈ N.

Note. The sequence of real numbers (∫
Ek

f

)∞
k=1

is bounded above by M and is monotone increasing because the sequence (Ek)∞k=1 is
increasing and because f ≥ 0.

Definition 8.4.7 (Continued). We define the integral of a nonnegative function f
integrable on A to be ∫

A

f = lim
k→∞

∫
Ek

f.

We say a measurable function g : A → R is integrable on A if g+ and g− are both
integrable on A and we define ∫

A

g =

∫
A

g+ −
∫
A

g−.

We denote L1(A;R) to be the collection of equivalence classes of integrable functions on
A (modulo equality almost everywhere).



Nota Bene 8.4.8. For an unbounded measurable A ⊂ Rn, you will show in the HW
(Exercise 8.18) that a measurable real-valued function g is integrable on A if and only if
|g| is integrable on A, and that L1(A,R) is a normed linear space.

Unexample (in lieu of 8.4.10). The function g : R→ R given by

g(t) =
t

1 + t2

is continuous and hence integrable on any compact interval.

The positive and negative parts of g are

g+(t) =

{
t/(1 + t2) if t ≥ 0,

0 if t < 0,
and g−(t) =

{
−t/(1 + t2) if t < 0

0 if t ≥ 0.

We show that neither g+ nor g− is integrable on R.

Taking Ek = [−k, k] for k ∈ N, we have R = ∪Ek and∫
Ek

g+ =

∫ k

0

t

1 + t2
dt =

1

2
log(1 + t2)

∣∣∣∣k
0

=
log(1 + k2)

2
.

For the increasing sequence Ek there is no M ∈ R such that∫
Ek

g+ ≤M for all k ∈ N

because log(1 + k2)→∞ as k →∞.

Could there be another increasing E ′k with
⋃
E ′k = R for which there is an M such that∫

Ek
g+ ≤M for all k ∈ N?

No, because E ′k is increasing with
⋃
E ′k = R, there will be l such that Ek = [−k, k] ⊂ E ′l,

which implies that
∫
E′

k
g+ →∞.

Thus g+ 6∈ L1(R,R).

Similarly g− 6∈ L1(R,R) because∫
Ek

g− =

∫ 0

−k

−t
1 + t2

dt =

∫ k

0

t

1 + t2
dt =

1

2
log(1 + k2)→∞.

These mean that it is not possible to avoid the undefined and unreconcilable situation of∫
R
g+ −

∫
R
g− =∞−∞ = ???.

Moreover, since |g| = g+ + g− we also have∫
R
|g| =

∫
R
g+ +

∫
R
g− =∞+∞ =∞,



which is another way of saying that |g| 6∈ L1(R,R).

In the definition of integrable for a nonnegative real-valued measurable function over a
domain A (not assumed bounded) we made use of an increasing sequence of bounded
measurable sets Ek whose union is A. As was illustrated in the previous example, we
show that integrability does not depend on the choice of the increasing Ek.

Theorem 8.4.11. Let A ⊂ Rn be a measurable set (not assumed bounded) and let f
be a nonnegative real-valued measurable function on A. Suppose (Ek)∞k=1 and (E ′k)∞k=1

are increasing sequences of bounded measurable sets for which

∞⋃
k=1

Ek = A =
∞⋃
k=1

E ′k,

and fχEk
and fχE′

k
are integrable on respective compact n-intervals containing Ek and

E ′k for all k ∈ N. If there exists M ∈ R such that∫
Ek

f ≤M for all k ∈ N,

then there holds ∫
E′

k

f ≤M for all k ∈ N,

and

lim
k→∞

∫
Ek

f = lim
k→∞

∫
E′

k

f.

Proof. Since each Ek is a bounded measurable set, there exists a compact n-interval
[ak, bk] such that Ek ⊂ [ak, bk] and χEk

∈ L1([ak, bk],R).

Similarly for each E ′m there is a compact n-interval [a′m, b
′
m] such that E ′m ⊂ [a′m, b

′
m] and

χE′
m
∈ L1([a′m, b

′
m],R).

For a fixed k and a fixed m there exists a compact n-interval [c, d] that contains both
[ak, bk] and [a′m, b

′
m].

By Proposition 8.3.11 the functions χEk
and χE′

m
both belong to L1([c, d],R).

The functions χEk
and χE′

m
both have ∞-norms equal to 1.

By hypothesis, the functions fχEk
and fχE′

m
both belong to L1([c, d],R).

By Proposition 8.4.2 part (v) the functions χEk
χE′

m
f and χEk

χE′
m
f both belong to

L1([c, d],R).

Thus the restriction χEk
and χEk

f to E ′m both belong to L1(E ′m,R).

Replacing Ek and E ′m with E ′k and Em respectively, implies by the above argument that
χE′

k
and fχE′

k
both belong to L1(Em,R).

By hypothesis, there exists M ∈ R such that for all k ∈ N there holds∫
Ek

f ≤M.



Then for all m ∈ N there holds∫
E′

m

fχEk
=

∫
Ek

fχE′
m
≤
∫
Ek

f ≤M.

Since (Ek)∞k=1 is increasing and f ≥ 0, the sequence (fχEk
)∞k=1 is monotone increasing.

By the Monotone Convergence Theorem we have for all m ∈ N that∫
E′

m

f =

∫
E′

m

lim
k→∞

fχEk
= lim

k→∞

∫
E′

m

fχEk
≤M.

This gives the first conclusion of the theorem.

Now since (Ek)∞k=1 is increasing and f ≥ 0, the sequence (
∫
Ek
f)∞k=1 of real numbers is

monotone increasing and bounded above, so there exists L ∈ R such that

L = lim
k→∞

∫
Ek

f.

We may thus take M = L in the first conclusion to get∫
E′

m

f ≤M = L.

Since (E ′m)∞m=1 is increasing and f ≥ 0, the sequence (
∫
E′

m
f)∞m=1 is monotone increasing

and bounded above, so there exists L′ ∈ R such that

L′ = lim
m→∞

∫
E′

m

f.

Thus we obtain

L′ = lim
m→∞

∫
E′

m

f ≤ L.

Reversing the roles of Ek and E ′m and taking M = L′ gives the inequality L ≤ L′.

Therefore L = L′ which is the second conclusion. �


