
Math 346 Lecture #17
8.6 Fubini’s Theorem and Leibniz’s Integral Rule

Fubini’s Theorem – the switching of the order of the iterated integrals for the multivariate
integral – is a consequence of passing the switching of the order of iterated integrals
on step functions (which is easily shown) to L1 functions by means of the Monotone
Convergence Theorem.

A consequence of Fubini’s Theorem is Leibniz’s integral rule which gives conditions by
which a derivative of a partial integral is the partial integral of a derivative, which is a
useful tool in computation of multivariate integrals.

8.6.1 Fubini’s Theorem

We fix some notation to aid in stating Fubini’s Theorem.

Let X = [a, b] ⊂ Rn and Y = [c, d] ⊂ Rm.

For g ∈ L1(X,R) we write the integral of g as∫
X

g(x) dx.

For h ∈ L1(Y,R) we write the integral of h as∫
Y

h(y) dy.

For f ∈ L1(X × Y,R) we write the integral of f as∫
X×Y

f(x, y) dxdy.

Note. The measure dxdy on Rn+m is not quite the “product” of the measures λn = dx
on Rn and λm = dy on Rn. The measure dxdy = λn+m is the “completion” of the product
of the measures dx and dy, that is, the missing subsets of sets of measure zero are added
and the product measure is extended.

For f : X × Y → R we define for each x ∈ X the function fx : Y → R by

fx(y) = f(x, y).

Theorem 8.6.1 (Fubini’s Theorem). If f ∈ L1(X × Y,R), then

(i) for almost all x ∈ X, we have fx ∈ L1(Y,R),

(ii) the function F : X → R defined by

F (x) =


∫
Y

fx(y) dy if fx ∈ L1(Y,R),

0 otherwise,

belongs to L1(X,R), and



(iii) there holds ∫
X×Y

f(x, y) dxdy =

∫
X

F (x) dx =

∫
X

(∫
Y

fx(y)dy

)
dx.

The proof of this is in Chapter 9 (which we are skipping).

Remark 8.6.2. We call∫
X

(∫
Y

fx(y)dy

)
dx =

∫
X

(∫
Y

f(x, y)dy

)
dx

an iterated integral of f .

Nota Bene 8.6.3. The hypothesis f ∈ L1(X × Y,R) cannot be weakened. Examples
exist for which fx ∈ L1(Y,R) for all x ∈ X and F ∈ L1(X,R) but f 6∈ L1(X × Y ) and
the two iterated integrals exists but differ in value.

Note. Each integral in an iterated integral can often be computed using the Fundamental
Theorem of Calculus.

Example (in lieu 8.6.4). For X = [0, π] and Y = [1, 2] the function f : X × Y → R
defined by

f(x, y) = x cos(xy)

is continuous on X × Y and thus belongs to L1(X × Y,R).

By Fubini’s Theorem and the Fundamental Theorem of Calculus we have∫
X×Y

f(x, y) dxdy =

∫
X

(∫
Y

f(x, y) dy

)
dx

=

∫ π

0

(∫ 2

1

x cos(xy) dy

)
dx

=

∫ π

0

(
sin(xy)

∣∣∣∣y=2

y=1

)
dx

=

∫ π

0

(
sin(2x)− sin(x)

)
dx

=

[
− cos(2x)

2
+ cos(x)

]π
0

= −1

2
− 1−

(
−1

2
+ 1

)
= −2.

8.6.2 Interchanging the Order of Integration

Switching the roles of X and Y in Fubini’s Theorem we get another iterated integral∫
Y

(∫
X

fy(x)dx

)
dy =

∫
Y

(∫
X

f(x, y)dx

)
dy



where fy : X → R is the function defined by fy(x) = f(x, y).

Proposition 8.6.5. If f ∈ L1(X × Y,R), then function f̃ : Y × X → R defined by
f̃(y, x) = f(x, y) belongs to L1(Y ×X,R), and there holds∫

Y×X
f̃(y, x) dydx =

∫
X×Y

f(x, y) dxdy.

The proof of this is requested in Chapter 9 (as an exercise).

Corollary 8.6.6. If f ∈ L1(X × Y,R), then∫
X

(∫
Y

fx(y) dy

)
dx =

∫
X×Y

f(x, y) dxdy =

∫
Y

(∫
X

fy(x) dx

)
dy.

The proof of the Corollary follows immediately from Fubini’s Theorem and Proposition
8.6.5.

Corollary 8.6.6 permits computing the integral of f over X × Y by either of the two
iterated integrals. Often one of the iterated integrals is much easier to compute than the
other.

Example (in lieu of 8.6.7). If f(x, y) = g(x)h(y) for continuous functions g : X → R
and h : Y → R, then f is continuous on X × Y , hence belongs to L1(X × Y,R), so by
the Fubini’s Theorem we have∫

X×Y
f(x, y) dxdy =

∫
X

(∫
Y

g(x)h(y) dy

)
dx

=

∫
X

(
g(x)

∫
Y

h(y) dy

)
dx

=

(∫
Y

h(y) dy

)∫
X

g(x) dx

=

(∫
X

g(x) dx

)(∫
Y

h(y) dy

)
.

By switching the order of integration we arrive at the same answer.

Example (in lieu of 8.6.8). For a bounded measurable set S ⊂ Rn × Rm, choose a
compact (m+ n)-interval X × Y that contains S. For a measurable function f : S → R
that satisfies fχS ∈ L1(X × Y,R), we define the double integral of f over S by∫∫

S

f dxdy =

∫
X×Y

fχS dxdy.

The function f is extended by zero outside of S to the complement X × Y − S.

A sufficient condition for fχS ∈ L1(X × Y,R) is that f is continuous on S and that the
boundary of S is piecewise differentiable, i.e., each boundary part of S is the graph of a
differentiable function, and that f : S → R is continuous. This means that the set on
which the extended by zero function f is discontinuous is a measurable set of measure
zero and therefore f ∈ L1(X × Y,R).



Example. Consider the subset S of R2 given by

S =
{

(x, y) ∈ R× R : −1 ≤ x ≤ 1,−1 ≤ y ≤
√

1− x2
}
.

The set S has piecewise differentiable boundary, and as a compact subset of R2, is a
measurable set contained in the compact 2-interval X × Y = [−1, 1]× [−1, 1].

The top boundary of S is the graph of the differentiable function

b(x) =
√

1− x2

while the bottom of S is the graph of the differentiable function

a(x) = −1.

To compute the double integral of a continuous f : S → R we can make use of variable
upper and lower limits to account for χS in the inner integral of the iterated integral:∫∫

S

(x, y) dxdy =

∫ 1

0

(∫ 1

0

f(x, y)χS dy

)
dx

=

∫ 1

0

(∫ b(x)

a(x)

f(x, y) dy

)
dx.

The integrability of the inner integral will be justified by the upcoming Corollary of
Leibniz’s Integral Rule, while the replacement of the limits −1 and 1 of integration of
the inner integral by a(x) and b(x) follows because fχS is zero outside of S which implies
that the integral of f on X × Y − S is zero.

The double integral of f(x, y) = x2y over S is∫∫
S

f(x, y) dxdy =

∫ 1

0

(∫ b(x)

a(x)

x2y dy

)
dx

=

∫ 1

0

(
x2

2

[
y2
]y=√1−x2
y=−1

)
dx

=

∫ 1

0

(
x2

2

[
(1− x2)− 1

])
dx

=

∫ 1

0

(
−x

4

2

)
dx

= −
[
x5

10

]1
−1

= −
(

1

10
−
(

(−1)5

10

)]
= − 2

10
= −1

5
.



A similar approach would hold if the measurable S had the form

S =
{

(x, y) ∈ R× R : −1 ≤ y ≤ 1,−1 ≤ x ≤
√

1− y2
}

with the order of integration starting with x and then y.

8.6.3 Leibniz’s Integral Rule

An important computational and theoretical tool for double integrals is Leibniz’s integral
rule, which, as a consequence of Fubini’s Theorem, gives sufficient conditions by which
differentiation can pass through the integral.

Theorem 8.6.9 (Leibniz’s Integral Rule). For an open interval X = (a, b) ⊂ R
and a compact interval Y = [c, d] ⊂ R, if f : X × Y → R is continuous and the partial
derivative ∂f

∂x
is continuous on X × Y , then the function

ψ(x) =

∫ d

c

f(x, y) dy

is differentiable on X, and the derivative of ψ is

dψ(x)

dx
=

∫ d

c

∂f(x, y)

∂x
dy.

Proof. Fix x0 ∈ X and let x ∈ X be arbitrary.

The compact interval with endpoints x0 and x is a subset of X = (a, b).

For each fixed y ∈ [c, d] = Y , the function fy(x) = f(x, y) is continuous differentiable
on the compact interval with endpoints x0 and x, i.e., the derivative is continuous on
the open interval with endpoints x0 and x, and extends to a continuous function on the
compact interval with endpoints x0 and x.

Thus by part (ii) of the Fundamental Theorem of Calculus (Theorem 6.5.4) and Fubini’s
Theorem we have that

ψ(x)− ψ(x0) =

∫ d

c

(
f(x, y)− f(x0, y)

)
dy

=

∫ d

c

(∫ x

x0

∂f(z, y)

∂z
dz

)
dy

=

∫ x

x0

(∫ d

c

∂f(z, y)

∂z
dy

)
dz.

For the function g : X → R defined by

g(z) =

∫ d

c

∂f(z, y)

∂z
dy

we have

ψ(x)− ψ(x0) =

∫ x

x0

g(z) dz.



To show the function ψ is differentiable on X we show that g is continuous on X and
the apply part (i) of the Fundamental Theorem of Calculus.

Fix z0 in the interior of the compact interval with endpoints x0 and x.

The Cartesian product of the compact interval with endpoints x0 and x and the compact
interval [c, d] is a compact subset of R2.

On this compact Cartesian product the continuous function ∂f(z, y)/∂z is uniformly
continuous: for ε > 0 there exists δ > 0 such that for all points (z1, y) and (z0, y) in the
Cartesian product satisfying

‖(z1, y)− (z0, y)‖2 < δ

there holds ∣∣∣∣∂f(z1, y)

∂z
− ∂f(z0, y)

∂z

∣∣∣∣ < ε

d− c
.

The inequality ‖(z1, y) − (z0, y)‖2 < δ implies that |z1 − z0| < δ. (We have not used
the full strength of the uniform continuity because we have put the same y in the two
points.)

We use these inequalities to get the continuity of g on the compact interval with endpoints
x0 and x: when |z1 − z0| < δ we have

|g(z1)− g(z0)| =
∣∣∣∣∫ d

c

∂f(z1, y)

∂z
dy −

∫ d

c

∂f(z0, y)

∂z
dy

∣∣∣∣
=

∣∣∣∣∫ d

c

(
∂f(z1, y)

∂z
− ∂f(z0, y)

∂z

)
dy

∣∣∣∣
≤
∫ d

c

∣∣∣∣∂f(z1, y)

∂z
− ∂f(z0, y)

∂z

∣∣∣∣ dy
≤
∫ d

c

ε

d− c
dy

= ε.

The continuity of g on the compact interval with endpoints x0 and x now implies by part
(i) of the Fundamental Theorem of Calculus that

d

dx

∫ x

x0

g(z) dz = g(x).

This implies, because

ψ(x)− ψ(x0) =

∫ x

x0

g(z) dz,

that ψ is differentiable at x in (a, b).

Since x ∈ (a, b) is arbitrary, we have that ψ is differentiable on X where dψ(x)/dx = g(x).

Since

g(x) =

∫ d

c

∂f(x, y)

∂x
dy,

we obtain the result. �



Corollary 8.6.12. Let X and A be bounded open intervals in R and suppose f :
X × A → R is continuous with continuous partial derivative ∂f/∂x on X × A. If
a, b : X → A are differentiable functions, then the function

ψ(x) =

∫ b(x)

a(x)

f(x, t) dt

is differentiable on X with derivative

d

dx
ψ(x) =

∫ b(x)

a(x)

∂f(x, t)

∂x
dt− a′(x)f(x, a(x)) + b′(x)f(x, b(x)).

The proof of this is HW (Exercise 8.29 where a hint is given).

Corollary 8.6.12 justifies the integrability of the inner integral in the iterated integral in
the Example (in lieu of 8.6.8) when S is a compact subset of R2 given by

S = {(x, y) ∈ R2 : x ∈ I, a(x) ≤ y ≤ b(x)}

where I is a compact interval and a, b : I → R are differentiable functions with a(x) ≤
b(x) for all x ∈ I, and f is extended by zero outside of S.


