Math 346 Lecture \#18
 8.7 Change of Variables

Change of Variables for integrals of real-valued functions of a real variable is the familiar substitution formula or u-substitution: for an continuous function $f:[a, b] \rightarrow \mathbb{R}$, there holds

$$
\int_{c}^{d} f(g(s)) g^{\prime}(s) d s=\int_{a}^{b} f(\tau) d \tau
$$

where $g:[c, d] \rightarrow[a, b]$ is a bijection with continuous derivative that doesn't change sign, and $g(c)=a$ and $g(d)=b$.
An analogous substitution formula or change of variables holds in higher dimensions.

8.7.1 Diffeomorphisms

Recall that a homeomorphism is a continuous bijection $h: U \rightarrow V$ for U and V open sets in Banach spaces where the inverse map $h^{-1}: V \rightarrow U$ is continuous on V.

A homeomorphism is a diffeomorphism when h and h^{-1} are continuously differentiable. We state the formal definition in the Banach space \mathbb{R}^{n}.
Definition 8.7.1. For open sets U and V in \mathbb{R}^{n}, a function $\Psi: U \rightarrow V$ is called a C^{1}-diffeomorphism if Ψ is a C^{1} bijection whose inverse Ψ^{-1} is C^{1}.
Note. Recall that the Inverse Function Theorem shows that a C^{1} function $F: U \rightarrow V$ is a "local" diffeomorphism when $D F\left(\mathrm{u}_{0}\right) \in \mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ has bounded inverse, i.e., there exist open U_{0} containing u_{0} and an open V_{0} containing $F\left(\mathrm{u}_{0}\right)$ such that F restricted to a function from U_{0} to V_{0} is a C^{1}-diffeomorphism.
Note. A C^{k}-diffeomorphism $\Psi: U \rightarrow V$ is a C^{k} bijection whose inverse $\Psi^{-1}: V \rightarrow U$ is C^{k}. A smooth or C^{∞}-diffeomorphism is a bijection $\Psi: U \rightarrow V$ that is C^{k} for all $k \in \mathbb{N}$ and whose inverse Ψ^{-1} is C^{k} for all $k \in \mathbb{N}$. By a diffeomorphism $\Psi: U \rightarrow V$ we mean a C^{1}-diffeomorphism.
Examples (in lieu of 8.7.3 and 8.7.4). (i) The function $f:(1,2) \rightarrow(1, \sqrt{2})$ defined by

$$
f(x)=\sqrt{x}
$$

is a diffeomorphism because f is a continuously differentiable bijection whose inverse map $f^{-1}(y)=y^{2}$ from $(1, \sqrt{2})$ to $(1,2)$ is continuously differentiable. In fact, f is a C^{∞}-diffeomorphism.
(ii) The function

$$
g(x)=\arctan (x)
$$

from \mathbb{R} to $(-\pi / 2, \pi / 2)$ is a diffeomorphism because it is a continuously differentiable bijection whose inverse $g^{-1}(y)=\tan (y)$ is continuously differentiable. Here again, g is a C^{∞}-diffeomorphism.
(iii) The function

$$
f(x)=x^{3}-3 x
$$

is not a diffeomorphism from \mathbb{R} to \mathbb{R} because it is not injective: $f(-\sqrt{3})=0=f(\sqrt{3})$.

However, if we restrict f to the open interval $U=(-1,1)$ (the interval between the two critical points of f) and, by abuse of notation, refer to the restriction of f to U also by f, then f is a continuously differentiable bijection from U to $V=(-2,2)$.
To see that f^{-1} is a continuously differentiable, we have $f^{\prime}(u)=3 u^{2}-3 \neq 0$ for each $u \in(-1,1)$, so by the Inverse Function Theorem, f is a "local" diffeomorphism on a neighbourhood U_{0} of each $u \in(-1,1)$.
Thus we can differentiate $\left(f^{-1} \circ f\right)(x)=x$ with $x \in U_{0}$ to get

$$
D f^{-1}(f(x))=\frac{1}{D f(x)}
$$

which since $D f(x) \neq 0$ for all $x \in U_{0}$ gives the continuous differentiability of f^{-1}.
Since $u \in U$ is arbitrary, we get that f^{-1} is continuously differentiable, and hence f is diffeomorphism.
(iv) The function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
h(x, y)=\left(x^{3}-y^{2}, x y\right)
$$

is a "local" diffeomorphism from an open set U containing the point $(1,2)$ to an open set V containing $h(1,2)=(-3,2)$ because

$$
D h(1,2)=\left[\begin{array}{cc}
3 x^{2} & -2 y \\
y & x
\end{array}\right]_{x=1, y=2}=\left[\begin{array}{cc}
3 & -4 \\
2 & 1
\end{array}\right]
$$

has a nonzero determinant of 11 .
But h is not a diffeomorphism from \mathbb{R}^{2} to \mathbb{R}^{2} because h is not injective, i.e.,

$$
h(0,2)=(-4,0)=h(0,-2) .
$$

8.7.2 Change of Variables

To anticipate the form of change of variables for integration in higher dimensions we rewrite the substitution formula.

Suppose that g is a diffeomorphism on an open set containing $[c, d]$ for which the continuous g^{\prime} doesn't change sign.
This gives two cases: g^{\prime} is positive and g^{\prime} is negative.
When g^{\prime} is positive then $g(c)<g(d)$ and we have

$$
\int_{g([c, d])} f=\int_{g(c)}^{g(d)} f(\tau) d \tau=\int_{c}^{d} f(g(s)) g^{\prime}(s) d s=\int_{[c, d]}(f \circ g)\left|g^{\prime}\right|
$$

When g^{\prime} is negative then $g(d)<g(c)$ and we have

$$
\begin{aligned}
\int_{g([c, d])} f & =\int_{g(d)}^{g(c)} f(\tau) d \tau=-\int_{g(c)}^{g(d)} f(\tau) d \tau=-\int_{d}^{c} f(g(s)) g^{\prime}(s) d s \\
& =-\int_{[c, d]}(f \circ g) g^{\prime}=\int_{[c, d]}(f \circ g)\left|g^{\prime}\right|
\end{aligned}
$$

Theorem 8.7.5 (Change of Variables Theorem). For open sets U and V in \mathbb{R}^{n} suppose $\Psi: U \rightarrow V$ is a diffeomorphism. If $X \subset U$ is measurable, then $Y=\Psi(X)$ is measurable. If $f \in L^{1}(Y, \mathbb{R})$, then

$$
\begin{aligned}
& \text { 1. }(f \circ \Psi)|\operatorname{det}(D \Psi)| \in L^{1}(X, \mathbb{R}) \text { and } \\
& \text { 2. } \int_{Y} f=\int_{X}(f \circ \Psi)|\operatorname{det}(D \Psi)|
\end{aligned}
$$

The proof of this is in Chapter 9.
Remark 8.7.6. To see what is happening here in the Change of Variables Theorem, take Ψ to be an invertible linear operator on \mathbb{R}^{n}, the measurable set $X=[\mathrm{a}, \mathrm{b}]$ a compact n-interval in \mathbb{R}^{n}, and $f=1$. Then $D \Psi(\mathrm{x})=\Psi$ for all $x \in \mathbb{R}^{n}$ so that

$$
\lambda(\Psi([\mathrm{a}, \mathrm{~b}]))=\int_{\Psi([\mathrm{a}, \mathrm{~b}])} 1=\int_{[\mathrm{a}, \mathrm{~b}]}(1 \circ \Psi)|\operatorname{det}(\Psi)|=|\operatorname{det}(\Psi)| \int_{[\mathrm{a}, \mathrm{~b}]} 1=|\operatorname{det}(\Psi)| \lambda([\mathrm{a}, \mathrm{~b}]) .
$$

This says the measure of $\Psi([a, b])$ is precisely the product of $|\operatorname{det}(\Psi)|$ and the measure of $[\mathrm{a}, \mathrm{b}]$. Using a SVD $\Psi=U \Sigma V^{\mathrm{H}}$, the value of $|\operatorname{det}(\Psi)|$ is the product of the diagonal entries of Σ (the singular values of Ψ) because the determinants of the orthornormal matrices have modulus 1. Each singular value of Ψ scales the $i^{\text {th }}$ standard basis vector by σ_{i}, so that the overall volume scales by the product of the singular values. The value of $|\operatorname{det}(\Psi)|$ gives the change of volume.
Corollary 8.7.8. For a diffeomorphism $\Psi: U \rightarrow V$, if $E \subset U$ is a set of measure zero, then $\Psi(E)$ is a set of measure zero.
Proof. Suppose E has measure zero. Then by the Change of Variables Theorem we have that $\Psi(E)$ is measurable and

$$
\int_{\Psi(E)} 1=\int_{E}|\operatorname{det}(D \Psi)|=\int_{U} \chi_{E}|\operatorname{det}(D \Psi)|=0
$$

because $\chi_{E}=0$ a.e. on U.
The measurability of $\Psi(E)$ implies that the function $\chi_{\Psi(E)}$ is measurable.
By Exercise 8.20 (and 8.14), the set $\Psi(E)$ has measure zero.
Nota Bene. If $\Psi: U \rightarrow V$ is only a homeomorphism, then it is possible for $\Psi(E)$ to have positive measure when E has measure zero, and for $\Psi(E)$ to have measure zero when E has positive measure. A homeomorphism $\Psi:[0,1] \rightarrow[0,1]$ is constructed in Math 541 for which $\Psi(E)$ has measure 1 for a certain set E of measure 0 , and passing to the complement of E in $[0,1]$, that $\Psi([0,1]-E)$ has measure zero with $[0,1]-E$ having measure 1. Diffeomorphisms cannot do these strange things to sets of measure zero.

8.7.3 Polar Coordinates

Polar coordinates on \mathbb{R}^{2} are determined by the diffeomorphism $\Psi:(0, \infty) \times(0,2 \pi) \rightarrow V$ given by

$$
\Psi(r, \theta)=(r \cos \theta, r \sin \theta)
$$

where

$$
V=\mathbb{R}^{2} \backslash\left\{(x, 0) \in \mathbb{R}^{2}: x \geq 0\right\}
$$

To see that Ψ is indeed a diffeomorphism, we recognize that it is bijective with inverse given by

$$
\Psi^{-1}(x, y)=\left(\sqrt{x^{2}+y^{2}}, \theta\right)
$$

where

$$
\theta= \begin{cases}\arctan (y / x) & \text { if } x>0 \text { and } y>0 \\ \pi / 2 & \text { if } x=0 \text { and } y>0 \\ \pi+\arctan (y / x) & \text { if } x<0 \\ 3 \pi / 2 & \text { if } x=0 \text { and } y<0 \\ 2 \pi-\arctan (y / x) & \text { if } x>0 \text { and } y<0\end{cases}
$$

One can check (and you should) that θ is at least a continuous function of (x, y).
The function Ψ is differentiable with continuous derivative

$$
D \Psi(r, \theta)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right]
$$

Since $\operatorname{det}(D \Psi(r, \theta))=r>0$ on $(0, \infty) \times(0,2 \pi)$, the Inverse Function Theorem guarantees that the inverse Ψ^{-1} is also continuously differentiable.
Thus Ψ is a diffeomorphism.
For any measurable $A \subset(0, \infty) \times(0,2 \pi)$, the image $B=\Psi(A) \subset V$ is measurable and for any measurable $f: B \rightarrow \mathbb{R}$ we have

$$
\iint_{B} f(x, y) d x d y=\int_{B} f=\int_{A}(f \circ \Psi) r=\iint_{A} f(r \cos \theta, \sin \theta) r d r d \theta
$$

We can extend the equality to $[0, \infty) \times[0,2 \pi]$ because the rays defined by $\theta=0$ and $\theta=2 \pi$ have measure zero and contribute zero to the integrals.

8.7.4 Spherical and Hyperspherical Coordinates

We recall spherical coordinates on \mathbb{R}^{3}, and then extend this to hyperspherical coordinates in \mathbb{R}^{n} for $n \geq 4$.
Definition 8.7.12. Let $U=(0,2 \pi) \times(0, \pi) \times(0, \infty)$. Spherical coordinates (θ, ϕ, r) on \mathbb{R}^{3} are defined by

$$
S(\theta, \phi, r)=(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \psi)
$$

One verifies that S is a diffeomorphism by computing

$$
D S(\theta, \phi, r)=\left[\begin{array}{ccc}
-r \sin \phi \sin \theta & r \cos \phi \cos \theta & \sin \phi \cos \theta \\
r \sin \phi \cos \theta & r \cos \phi \sin \theta & \sin \phi \cos \theta \\
0 & -r \sin \phi & \cos \phi
\end{array}\right]
$$

and

$$
|\operatorname{det}(D S(\theta, \phi, r))|=r^{2} \sin \phi>0
$$

One can check that S is C^{1} and bijective with range $V=S(U)$.
Since $D S(\theta, \phi, r) \neq 0$ on U, the Inverse Function Theorem guarantees that the inverse function is C^{1}.
Thus S is a diffeomorphism.
Applying the Change of Variables Theorem to S gives for any measurable subset X of U and integrable $f: X \rightarrow \mathbb{R}$ the formula

$$
\begin{aligned}
\int_{S(X)} f & =\iiint_{S(X)} f(x, y, z) d x d y d z=\int_{X}(f \circ S) r^{2} \sin \phi \\
& =\int_{X} f(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi) r^{2} \sin \phi d r d \phi d \theta
\end{aligned}
$$

We can extend this formula to closure of U because the $\bar{U} \backslash U$ is a set of measure zero.
Definition 8.7.14. Hyperspherical coordinates $\left(\phi_{1}, \ldots, \phi_{n-2}, \phi_{n-1}, r\right)$ on \mathbb{R}^{n} are given the function

$$
\begin{aligned}
\Psi: & (0, \pi) \times \cdots \times(0, \pi) \times(0,2 \pi) \times(0, \infty) \\
& \rightarrow r\left[\begin{array}{c}
\cos \left(\phi_{1}\right) \\
\sin \left(\phi_{1}\right) \cos \left(\phi_{2}\right) \\
\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cos \left(\phi_{3}\right) \\
\vdots \\
\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-2}\right) \cos \left(\phi_{n-1}\right) \\
\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-2}\right) \sin \left(\phi_{n-1}\right)
\end{array}\right] \in \mathbb{R}^{n},
\end{aligned}
$$

where there are $n-2$ copies of $(0, \pi)$ in the domain U of Ψ.
A straightforward but tedious computation shows that

$$
\operatorname{det}\left(D \Psi\left(\phi_{1}, \ldots, \phi_{n-2}, \phi_{n-1}, r\right)\right)=r^{n-1} \sin ^{n-2}\left(\phi_{1}\right) \sin ^{n-3}\left(\phi_{2}\right) \cdots \sin \left(\phi_{n-2}\right)
$$

One shows that Ψ is a C^{1} bijection from U to $V=\Psi(U)$.
Since $D \Psi \neq 0$, the Inverse Function Theorem shows that Ψ^{-1} is C^{1} on V.
Thus Ψ is a diffeomorphism from U to V.
Applying the Change of Variables Theorem to Ψ gives for any measurable subset X of U and integrable $f: X \rightarrow \mathbb{R}$ the formula

$$
\int_{V} f=\int_{U}(f \circ \Psi) r^{n-1} \sin ^{n-2}\left(\phi_{1}\right) \sin ^{n-3}\left(\phi_{2}\right) \cdots \sin \left(\phi_{n-2}\right)
$$

You will use hyperspherical coordinates to find the volume of the unit ball (in the 2-norm) in \mathbb{R}^{n} (Exercise 8.36).

