Math 346 Lecture #18
8.7 Change of Variables

Change of Variables for integrals of real-valued functions of a real variable is the familiar
substitution formula or w-substitution: for an continuous function f : [a,b] — R, there
holds

d b
| fe@)g ) ds = [ 1) ar
where g : [¢c,d] — [a, b] is a bijection with continuous derivative that doesn’t change sign,
and ¢g(c¢) = a and g(d) = b.
An analogous substitution formula or change of variables holds in higher dimensions.

8.7.1 Diffeomorphisms

Recall that a homeomorphism is a continuous bijection h : U — V for U and V open
sets in Banach spaces where the inverse map h~! : V — U is continuous on V.

A homeomorphism is a diffeomorphism when h and h~! are continuously differentiable.
We state the formal definition in the Banach space R".

Definition 8.7.1. For open sets U and V in R”, a function ¥ : U — V is called a
C'-diffeomorphism if ¥ is a C* bijection whose inverse U1 is C1.

Note. Recall that the Inverse Function Theorem shows that a C* function F: U — V
is a “local” diffecomorphism when DF(uy) € #(R™, R") has bounded inverse, i.e., there
exist open Uy containing uy and an open Vj containing F'(ug) such that F' restricted to
a function from Uy to Vj is a C'-diffeomorphism.

Note. A C*-diffeomorphism ¥ : U — V is a C* bijection whose inverse =! : V — U is
C*. A smooth or C*°-diffeomorphism is a bijection ¥ : U — V that is C* for all k € N
and whose inverse ¥~! is C* for all k € N. By a diffeomorphism ¥ : U — V we mean a
CO'-diffeomorphism.

Examples (in lieu of 8.7.3 and 8.7.4). (i) The function f : (1,2) — (1,+/2) defined

by
flx) =V

is a diffeomorphism because f is a continuously differentiable bijection whose inverse
map f~'(y) = y* from (1,v/2) to (1,2) is continuously differentiable. In fact, f is a
C*-diffeomorphism.

(ii) The function
g(x) = arctan(x)

from R to (—m/2,7/2) is a diffeomorphism because it is a continuously differentiable
bijection whose inverse ¢g~!(y) = tan(y) is continuously differentiable. Here again, g is a
C>-diffeomorphism.
(iii) The function

f(z) =2 -3z

is not a diffeomorphism from R to R because it is not injective: f(—v/3) =0 = f(/3).



However, if we restrict f to the open interval U = (—1,1) (the interval between the two
critical points of f) and, by abuse of notation, refer to the restriction of f to U also by
f, then f is a continuously differentiable bijection from U to V = (-2, 2).

To see that f~! is a continuously differentiable, we have f'(u) = 3u? — 3 # 0 for each
€ (—1,1), so by the Inverse Function Theorem, f is a “local” diffeomorphism on a
neighbourhood Uy of each u € (—1,1).

Thus we can differentiate (f~! o f)(x) = z with z € Uy to get
1
Df(x)
which since D f(z) # 0 for all z € U gives the continuous differentiability of f~*.

Df 7 (f(x)) =

Since v € U is arbitrary, we get that f~! is continuously differentiable, and hence f is
diffeomorphism.

(iv) The function h : R* — R? defined by

h(z,y) = (2 — y?, zy)

is a “local” diffeomorphism from an open set U containing the point (1,2) to an open set
V' containing h(1,2) = (—3,2) because

po =[] b

has a nonzero determinant of 11.

But A is not a diffeomorphism from R? to R? because h is not injective, i.e.,
h(0,2) = (—4,0) = h(0, —2).

8.7.2 Change of Variables

To anticipate the form of change of variables for integration in higher dimensions we
rewrite the substitution formula.

Suppose that g is a diffeomorphism on an open set containing [¢, d] for which the contin-
uous ¢’ doesn’t change sign.

This gives two cases: ¢’ is positive and ¢’ is negative.

When ¢’ is positive then g(c¢) < g(d) and we have

/gqc,d])f: (g(d fr dT_/ 19 = /[Qd](fog)lg’h

When ¢’ is negative then g(d) < g(c) and we have

/gqc,d])f gjd() fr / f(r / Cf(g(S))g’(s) ds

=] oo zjc’d](fog)!g\



Theorem 8.7.5 (Change of Variables Theorem). For open sets U and V in R"
suppose ¥ : U — V is a diffeomorphism. If X C U is measurable, then Y = W(X) is
measurable. If f € L'(Y,R), then

o W)|det(DV)| € L'(X,R) and

‘/f / f o W)|det(DW)|.

The proof of this is in Chapter 9.

Remark 8.7.6. To see what is happening here in the Change of Variables Theorem,
take W to be an invertible linear operator on R", the measurable set X = [a, b] a compact
n-interval in R, and f = 1. Then DV¥(x) = ¥ for all z € R™ so that

AT ([a, b)) = / I [ (o Wdet()] = [det(w)] [ 1= fder(¥) A, b]).

[a,b]

This says the measure of W([a, b]) is precisely the product of |det(V)| and the measure
of [a,b]. Using a SVD ¥ = UXVH | the value of |det(¥)] is the product of the diagonal
entries of 3 (the singular values of W) because the determinants of the orthornormal
matrices have modulus 1. Each singular value of ¥ scales the i*" standard basis vector
by o;, so that the overall volume scales by the product of the singular values. The value
of |det(W)| gives the change of volume.

Corollary 8.7.8. For a diffeomorphism ¥ : U — V, if E C U is a set of measure zero,
then W(F) is a set of measure zero.

Proof. Suppose E has measure zero. Then by the Change of Variables Theorem we have
that W(F) is measurable and

L(E)lsz’det(D\Ifﬂ:/UXE\det(DqJ”:O

because yg = 0 a.e.on U.
The measurability of W(£) implies that the function xg(g) is measurable.
By Exercise 8.20 (and 8.14), the set U(E) has measure zero. O

Nota Bene. If ¥ : U — V is only a homeomorphism, then it is possible for U(E) to
have positive measure when E has measure zero, and for ¥(FE) to have measure zero
when E has positive measure. A homeomorphism V¥ : [0,1] — [0,1] is constructed in
Math 541 for which W(E) has measure 1 for a certain set E of measure 0, and passing to
the complement of E in [0, 1], that ¥([0, 1] — E') has measure zero with [0, 1] — E having
measure 1. Diffeomorphisms cannot do these strange things to sets of measure zero.

8.7.3 Polar Coordinates

Polar coordinates on R? are determined by the diffeomorphism ¥ : (0, 00) x (0,27) — V
given by

U(r,0) = (rcosf,rsinb)



where

V =R?*\ {(z,0) € R*: 2 > 0}.

To see that W is indeed a diffeomorphism, we recognize that it is bijective with inverse

given by
Uiz y) = (Va2 +12,0)
where )
arctan(y/x) ifx>0andy >0,
/2 if x=0andy >0,
0 = ¢ ™+ arctan(y/z) ifz <0,
3r/2 ifr=0andy <0,
| 27 —arctan(y/z) if x>0 and y <O0.

One can check (and you should) that 6 is at least a continuous function of (x,y).

The function V¥ is differentiable with continuous derivative

cos sin 6 }

—rsinf rcosf

DU(r,0) = [

Since det(DW(r,0)) = r > 0 on (0, 00) % (0, 27), the Inverse Function Theorem guarantees
that the inverse ¥~! is also continuously differentiable.

Thus V¥ is a diffeomorphism.

For any measurable A C (0,00) x (0,2n), the image B = W(A) C V is measurable and
for any measurable f : B — R we have

//Bf(:n,y) dﬂly:/Bf:/A(fO‘I’)TZ//Af(rcosé,sine)r drdf.

We can extend the equality to [0,00) x [0,27] because the rays defined by # = 0 and
0 = 27 have measure zero and contribute zero to the integrals.

8.7.4 Spherical and Hyperspherical Coordinates

We recall spherical coordinates on R3, and then extend this to hyperspherical coordinates
in R™ for n > 4.

Definition 8.7.12. Let U = (0,27) x (0, 7) x (0,00). Spherical coordinates (8, ¢,r) on
R3 are defined by

S(0,¢,r) = (rsin¢cosf, rsin¢sinb, rcos).
One verifies that S is a diffeomorphism by computing

—rsingsind rcos¢cost sin¢@cosf
DS(0,¢p,7) = | rsingcosf rcospsind sin ¢ cosd
0 —7rsin ¢ cos ¢

and
|det(DS(0, ¢,7))| = r*sin¢g > 0.



One can check that S is C* and bijective with range V = S(U).

Since DS(6,¢,7) # 0 on U, the Inverse Function Theorem guarantees that the inverse
function is C*.

Thus S is a diffeomorphism.

Applying the Change of Variables Theorem to S gives for any measurable subset X of U
and integrable f : X — R the formula

= dxdydz = 0 S)r?si
[t ][ s s [ 525ymo
:/ f(rsin ¢ cosf,rsin ¢siné, r cos ¢)r?sin ¢ drdpds.
X

We can extend this formula to closure of U because the U \ U is a set of measure zero.

Definition 8.7.14. Hyperspherical coordinates (¢1, ..., ¢n_2, ¢n_1,7) on R" are given
the function

U (0,m) x -+ x (0,m) x (0,2m) x (0, 00)

[ cos(¢1)
‘ Sin(qb'l) cos(¢p9)
o sin(¢y) sm(:qbz) cos(¢3) c R,
Sin(¢1) Sin(¢2) T Sin<¢n72) COS<¢n71)
| sin(¢1) sin(¢g) - - - sin(¢p_2) sin(¢n 1)

where there are n — 2 copies of (0,7) in the domain U of W.

A straightforward but tedious computation shows that

det (D\I/(gzﬁl, ey Op—, On1, 7“)) = " sin™ " 2(¢y) sin" " (¢ha) - - - sin ().
One shows that ¥ is a C'! bijection from U to V = ¥(U).
Since D # 0, the Inverse Function Theorem shows that ¥~!is C! on V.
Thus V¥ is a diffeomorphism from U to V.

Applying the Change of Variables Theorem to ¥ gives for any measurable subset X of
U and integrable f : X — R the formula

[ 1= o wyrtsint ) s ) sin(o )

You will use hyperspherical coordinates to find the volume of the unit ball (in the 2-norm)
in R (Exercise 8.36).



