
Math 346 Lecture #19
10.1 Curves and Arclength

We review the theory of smooth curves in Rn, and extend this to the general Banach
space setting.

Smooth curves are examples of one-dimensional “manifolds.” In this chapter we extend
Calculus on Banach spaces to manifolds.

Throughout this lecture we let (X, ‖ · ‖) be a Banach space.

Definition 10.1.1. For an interval I ⊂ R, a smooth parameterized curve in X is an
injective C1 function σ : I → X for which Dσ ∈ C(I,B(R, X)) satisfies Dσ(t) 6= 0 for
all t ∈ I.

Note. We often write σ′ in place of Dσ.

Note. No condition is placed on the interval I; it could be compact, open, half-closed
half-open, unbounded, etc. We often refer to the domain I as “time” and use the variable
t to denote elements of I.

Note. When I is not open, continuity and continuous differentiability of σ at an endpoint
c of I is in the one-sided sense, i.e., if c is the left endpoint of I, then

lim
t→c+

σ(t) = σ(c)

and there exists A ∈ B(R, X) such that A = limt→c+ Dσ(t) and

lim
t→c+

‖σ(t)− σ(c)− A(t− c)‖
t− c

= 0,

with similar statements holding if c is the right endpoint of I.

Definition. For a compact interval [a, b], a C1 function σ : [a, b]→ X is called a simple
closed curve if σ(a) = σ(b) and σ is injective on [a, b).

Remark 10.1.2. Some of the results of this section holds for curves σ : I → X when I
is closed but σ is not differentiable at the endpoints of I but are continuous on I and C1

on the interior of I.

Definition. The tangent “vector” of a smooth parameterized curve σ : I → X at t ∈ I
is the map σ′(t) ∈ B(R, X).

Using the isomorphism B(R, X) ∼= X given by sending ν ∈ B(R, X) to ν(1) ∈ X (see
Theorem 6.5.4), we can think of σ′(t) as a vector in X.

The tangent line of a smooth parameterized curve σ : I → X at t ∈ I is the map
L : R→ X defined by

L(τ) = σ′(t)(τ) + σ(t) = τσ′(t)(1) + σ(t)

where we have used the linearity of σ′(t), i.e., σ′(t)(τ) = σ′(t)(τ · 1) = τσ(t)(1).

Replacing σ′(t)(1) with σ′(t) gives the more familiar looking tangent line

L(τ) = τσ′(t) + σ(t).



10.1.1 Parameterizations and Equivalent Curves

The image of a smooth parameterized curve σ : I → X is a curve in X and there may be
other smooth parameterized curves with the same image. This leads to two equivalence
relations on smooth parameterized curves.

Definition 10.1.4. Two smooth parameterized curves σ1 : I → X and σ2 : J → X are
called equivalent if there exists C1 bijection φ : I → J with φ′(t) > 0 for all t ∈ I such
that

σ2 ◦ φ = σ1.

This equivalence is an equivalence relation for which the reflexivity and transitivity are
readily verified (see note below for verifying the symmetry condition).

When two smooth parameterized curves are equivalent, we say that σ2 = σ1 ◦ φ is a
reparameterization of σ1 and refer to φ as a reparameterization.

The condition φ′ > 0 on a reparameterization preserves the orientation of the curve.

Each equivalence class of smooth parameterized curves is called a smooth oriented curve.

Note. A C1 bijection φ : I◦ → J◦ with φ′(t) > 0 for all t ∈ I◦ is a C1 diffeomorphism
from I◦ to J◦ by the Inverse Function Theorem. The notion of diffeomorphism on open
intervals extends to closures of open intervals through the one-sided limits. Thus we may
speak of diffeomorphisms of intervals that are not open. This extension of diffeomor-
phism is needed when verifying the symmetry condition for the equivalence of smooth
parameterized curves to be an equivalence relation.

Definition. Another equivalence relation on smooth parameterized curves is obtained
by replacing φ′ > 0 with φ′ 6= 0 on reparameterizations. Each equivalence class for this
equivalence relation is called a smooth unoriented curve, or simply a smooth curve.

A reparameterization φ with φ′ < 0 reverses the orientation of a smooth curve.

Remark 10.1.5. The tangent vector σ′(t) of a smooth curve σ : I → X at the point
σ(t) for a t ∈ I depends on the parameterization σ.

A reparameterization φ : I → J of σ leads to a possible different tangent vector at the
same point σ(t) because for the unique s ∈ J that satisfies t = φ(s) we have σ◦φ(s) = σ(t)
and

d

ds

(
σ ◦ φ(s)

)
= σ′(φ(s))φ′(s) = σ′(t)φ′(s),

i.e., the tangent vector σ′(t) at σ(t) is scaled by the derivative φ′(s) which derivative may
not be 1.

However, the unit tangent vector

T (t) =
σ′(t)

‖σ′(t)‖

is the same for all orientation preserving reparameterizations of σ and is therefore is
well-defined for the equivalence class of a smooth oriented curve.

The unit tangent vector will change sign for an orientation-reversing reparameterzation.



Definition 10.1.6. A finite collection of smooth parameterized curves σi : [ai, bi]→ X,
i = 1, . . . , k, is called a piecewise-smooth parameterized curve if there holds

σi(bi) = σi+1(ai+1) for all i = 1, . . . , k − 1.

A piecewise smooth parameterized curve is denoted by

σ1 + · · ·+ σk

and is also known as the concatenation of k smooth parameterized curves.

Remark 10.1.7. Although we focus mainly on smooth parameterized curves, most of
the results extend piecewise to piecewise smooth parameterized curves.

10.1.2 Arclength

The arclength of a smooth oriented curve is precisely the length of the curve, a quantity
that should be independent of the smooth parameterized curve in the equivalence class
of the smooth oriented curve.

Definition 10.1.8. The arclength len(σ) of a smooth parameterized curve σ : [a, b]→ X
is the quantity

len(σ) =

∫
[a,b]

‖σ′‖ =

∫ b

a

‖σ′(t)‖ dt.

Note. The integrand in the definition of len(σ) is integrable because ‖σ′‖ is the compo-
sition of two continuous functions where σ′ has compact domain.

Note. The arclength depends on the norm. Difference arclength can result from different
norms as illustrated next.

Example (in lieu of 10.1.10). For the Banach space X = M3(R) with the norm
‖ · ‖∞, find the arclength of the curve σ : [0, 1]→ X given by

σ(t) =

1 et t
0 1 e−t

0 0 1

 .
Since

σ′(t) =

0 et 1
0 0 −e−t
0 0 0


we have

‖σ′(t)‖∞ = et + 1 for all t ∈ [0, 1].

Thus the arclength of σ is

len(σ) =

∫ 1

0

(1 + et) dt =
[
t+ et

]1
0

= e.



If instead we use the Frobenius norm ‖ · ‖F on M3(R), we have

‖σ′(t)‖F =
√

tr(σ′(t)Tσ′(t))

=

tr

0 0 0
et 0 0
1 −e−t 0

0 et 1
0 0 −e−t
0 0 0


1/2

=

tr

0 0 0
0 e2t et

0 et 1 + e−2t


1/2

=
√
e2t + 1 + e−2t.

In the Frobenius norm, the arclength of σ is

len(σ) =

∫ 1

0

√
e2t + 1 + e−2t dt

=

∫ 1

0

√
e2t + 2 + e−2t − 1 dt

=

∫ 1

0

√
(et + e−t)2 − 1 dt

=

∫ 1

0

√
4 cosh2(t)− 1 dt ≈ 2.122068737,

the approximation given by Maple.

Proposition 10.1.12. The arclength of a smooth curve is the same for all param-
eterizations of it, that is, if σ : [a, b] → X and γ = σ ◦ φ for a C1-diffeomorphism
φ : [c, d]→ [a, b] with φ′(t) 6= 0 for all t ∈ [c, d], then len(σ) = len(γ).

Proof. The continuity of φ′ and the condition φ′(t) 6= 0 for all t ∈ [c, d] imply by the
Intermediate Value Theorem that either φ′(t) > 0 for all t ∈ [c, d] or φ′(t) < 0 for all
t ∈ [c, d] (because if φ′(t1) < 0 < φ′(t2) for some t1, t2 ∈ [c, d], continuity of φ′ implies
by the Intermediate Value Theorem that there exists t3 in between t1 and t2 such that
φ′(t3) = 0, a contradiction).

Suppose φ′(t) < 0 for all t ∈ [c, d]. (The other case is similar.)

Since φ : [c, d]→ [a, b] is bijective, there exists a unique t0 ∈ [c, d] such that φ(t0) = b.

To show that t0 = c we suppose that t0 > c.

Then by the Mean Value Theorem there exists ξ ∈ (c, t0) for which

b− φ(c) = φ(t0)− φ(c) = φ′(ξ)(t0 − c) < 0.

This means that φ(c) > b which is impossible because φ(c) ∈ [a, b], i.e., φ(c) ≤ b.

This contradiction implies that t0 = c, so that φ(c) = b.

Similarly we obtain φ(d) = a.



By the Change of Variables Theorem, the substitution u = φ(t) gives

len(γ) =

∫ d

c

‖γ′(t)‖ dt

=

∫ d

c

‖Dγ(t)‖ dt [Dγ = γ′]

=

∫ d

c

‖D(σ ◦ φ)(t)‖ dt [γ = σ ◦ φ]

=

∫ d

c

‖Dσ(φ(t))Dφ(t)‖ dt [chain rule]

=

∫ d

c

‖Dσ(φ(t))‖ |Dφ(t)| dt [Dφ(t) is a scalar]

=

∫ d

c

‖σ′(φ(t))‖ |φ′(t)| dt

= −
∫ d

c

‖σ′(φ(t))‖φ′(t) dt [φ′(t) < 0]

= −
∫ a

b

‖σ′(u)‖ dt [change of variable]

=

∫ b

a

‖σ′(u)‖ dt

= len(σ).

This shows that a orientation-reversing reparameterization of the smooth curve does not
change its arclength. �

Definition 10.1.13. The arclength function of a smooth parameterized curve σ :
[a, b]→ X is the function s : [a, b]→ R defined by

s(t) = len(σ|[a,t]) =

∫ t

a

‖σ′(τ)‖ dτ ;

the range of the arclength function is [0, len(σ)].

Note. The arclength function s is differentiable by part (i) of the Fundamental Theo-
rem of Calculus because the integrand ‖σ′(τ)‖ is the the composition of two continuous
functions and hence continuous; the derivative of the arclength function is

s′(t) = ‖σ′(t)‖.

Since t→ ‖σ′(t)‖ is continuous on [a, b], the arclength function is C1.

Definition. We say that a smooth parameterized curve σ : [a, b]→ X is parameterized
by arclength if a = 0 and ‖σ′(t)‖ = 1 for all t ∈ [0, b].

Note. A smooth curve σ : [0, b]→ X parameterized by arclength has the property that

s(t) =

∫ t

0

‖σ′(τ)‖ dτ =

∫ t

0

dτ = t



for all t ∈ [0, b], and the property that

len(σ) =

∫ b

0

dτ = b.

Example (in lieu of 10.1.14). For X = M3(R) with norm ‖·‖∞, consider the smooth
parameterized curve σ : [0, π]→ X given by

σ(t) =

 1 t 0
sin t 2 0
−1 0 cos t

 .
Since

σ′(t) =

 0 1 0
cos t 0 0

0 0 − sin t


we have

‖σ′(t)‖∞ = 1 for all t ∈ [0, π].

Thus σ is parameterized by arclength.

Proposition 10.1.15. For a smooth parameterized curve σ : [a, b]→ X, the arclength
function s : [a, b]→ [0, len(σ)] is a diffeomorphism.

The proof of this is HW (Exercise 10.2 where you need only show that the C1 function
s is bijective; that s is a diffeomorphism follows from the Inverse Function Theorem and
the one-sided limits.)

Definition 10.1.16. For a smooth parameterized curve σ : [a, b]→ X and its arclength
function s : [a, b] → [0, len(σ)], the reparameterization of σ by arclength is the smooth
parameterized curve γ : [0, len(σ)]→ X given by

γ = σ ◦ s−1.

Proposition 10.1.17. The reparameterization γ : [0, len(σ)] → X by arclength of a
smooth parameterized curve σ : [a, b]→ X is a smooth curve parameterized by arclength,
i.e.,

‖γ′(τ)‖ = 1 for all τ ∈ [0, len(σ)].

Proof. For τ ∈ [0, len(σ)], set t = s−1(τ), i.e., τ = s(t).

By the Inverse Function Theorem the derivative of s−1 satisfies

Ds−1(τ) = Ds−1(s(t)) = [Ds(t)]−1 =
1

Ds(t)
.

Thus we have

Dγ(τ) = D(σ ◦ s−1)(τ) = Dσ(s−1(τ))Ds−1(τ) =
Dσ(t)

Ds(t)

Since Dσ(t) = σ′(t) and Ds(t) = ‖σ′(t)‖ the norm of γ′(t) = Dγ(t) is 1 for all t ∈
[0, len(σ)]. �


