
Math 346 Lecture #25
11.2 Properties and Examples

Holomorphic functions satisfy all of the usual rules of differentiation, whether they are
complex valued or more general complex Banach space X-valued. We will consider the
case of X = Mn(C) in Chapter 12.

Holomorphic functions also have a very close connection to convergent power series. The
first part of this connection – that every convergent power series is holomorphic – we will
see in this section.

Throughout this section (X, ‖ · ‖X) is a complex Banach space.

11.2.1 Basic Properties

Remark 11.2.1. For an open subset U of C, a function f : U → X is continuous
on U when f is holomorphic on U , because complex differentiability at a point implies
continuity at that point (see Corollary 6.3.8).

Theorem 11.2.2. For U open in C, suppose f, g : U → C are holomorphic.

(i) For any constants a, b ∈ C, the function af + bg is holomorphic on U .

(ii) The product fg is holomorphic on U and

(fg)′ = f ′g + fg′.

(iii) If g(z) 6= 0 on U , then f/g is holomorphic on U and(
f

g

)′
=

f ′g − fg′

g2
.

(iv) For k ∈ N and a0, a1, . . . , ak ∈ C, the polynomial z → a0 +a1z + · · ·+akz
k is entire

and its derivative is
z → a1 + 2a2z + · · ·+ kaka

k−1.

(v) For m,n ∈ N, a0, a1, . . . , an ∈ C, and b0, b1, . . . , bm ∈ C, the rational function

z → a0 + a1z + · · ·+ anz
n

b0 + b1z + · · ·+ bmzm

is holomorphic on the open set C \ {complex roots of the denominator}.

Theorem 11.2.3 (Chain Rule). For open sets U, V in C, if f : U → C and g : V → C
are holomorphic, and f(U) ⊂ V , then f ◦ g : U → C is holomorphic and

(f ◦ g)′(z) = f ′(g(z))g′(z) for all z ∈ U.

The proof of this follows from Theorem 6.4.7.

Proposition 11.2.4. For an open and path-connected U in C, if f : U → X is
holomorphic and f ′(z) = 0 for all z ∈ U , then f is constant on U , i.e., there exists x ∈ X
such that f(z) = x for all z ∈ U .



Proof. For any z1, z2 ∈ U there is a smooth path g : [0, 1]→ U such that g(0) = z1 and
g(1) = z2.

The composition f ◦ g is C1 on (0, 1) and its derivative (f ◦ g)′ is continous on [0, 1];
these follows because f and g are both differentiable, and the hypothesis f ′(z) = 0 for
all z ∈ U implies that the derivative (f ◦ g)′(t) = f ′(g(t))g′(t) is the zero function which
is continuous.

By the Fundamental Theorem of Calculus we have

f(z2)− f(z1) = f(g(1))− f(g(0)) =

∫
[0,1]

(f ◦ g)′ =

∫
[0,1]

0 = 0.

Since z1, z2 are arbitrary points of the path connected open U , we obtain that f is
constant on U . �

11.2.2 Convergent Power Series are Holomorphic

We review some of the basic theory of convergent power series, some of which you saw
in Math 341, and then prove that a convergent power series in a complex variable is
holomorphic.

We look at more general power series as follows. For ak ∈ X, k = 0, 1, 2, . . . , and z0 ∈ C,
a power series in X is

f(z) =
∞∑
k=0

ak(z − z0)
k.

For each r > 0 and each n = 0, 1, 2, . . . , the partial sum

fn(z) =
n∑

k=0

ak(z − z0)
k

is a function belonging to the Banach space

(L∞(B(z0, r), X), ‖ · ‖∞)

where
‖g‖∞ = sup

z∈B(z0,r)

‖g(z)‖X .

Convergence of the sequence of partial sums is always with respect to this Banach space,
i.e., the topology of uniform convergence on compact sets.

A power series converges on an open set U if it converges on every compact subset of U .

Lemma 11.2.5 (Abel-Weierstrass Lemma). For a sequence a0, a1, a2, · · · ∈ X, if
there exist an R > 0 and M > 0 such that for all n = 0, 1, 2, . . . there holds

‖an‖XRn ≤M,

then for any 0 < r < R, the two series

∞∑
k=0

ak(z − z0)
k and

∞∑
k=0

kak(z − z0)
k−1



(the second being the formal term-by-term derivative of the first) both converge uniformly
and absolutely on B(z0, r) ⊂ C.

See the book for the proof.

Corollary 11.2.6. If a series
∑∞

k=0 ak(z − z0)
k diverges when z = z1, then the series

diverges at every z ∈ C that satisfies |z − z0| > |z1 − z0|.
Proof. This is the contrapositive of the Abel-Weierstrass Lemma. �

Definition 11.2.7. Suppose a power series
∑∞

k=0 ak(z − z0)
k converges on B(z0, r) for

some r > 0. The radius of convergence of the series is the supremum of the values
of R > 0 for which the series converges uniformly on all compact subsets of the open
B(z0, R).

The supremum is ∞ if the series converges uniformly on all compact subsets of B(z0, R)
for all R > 0, and we say the radius of convergence is ∞.

Theorem 11.2.8. If a power series f(z) =
∑∞

k=0 ak(z − z0)
k converges uniformly on

compact subsets of B(z0, R), then

(i) the function f is holomorphic on B(z0, R), and

(ii) the series g(z) =
∑∞

k=1 kak(z − z0)
k−1 converges uniformly on compact subsets of

B(z0, R) and f ′(z) = g(z) on B(z0, R).

See the book for the proof.

Definition 11.2.9. For an open U ⊂ C, a function f : U → X is called complex analytic
(or simply analytic when there is no confusion with real analytic) if for all z0 ∈ U there
exists r > 0 with B(z0, r) ⊂ U such that f can be written as a convergent power series
on B(z0, r).

Remark 11.2.10. Any analytic function f : U → X is holomorphic on U by Theorem
11.2.8 part (i), and its derivative f ′ : U → X is analytic by Theorem 11.2.8 part (ii),
and hence f ′ is holomorphic by Theorem 11.2.8 part (i). By in induction this means that
every derivative f (l) is holomorphic, so that an analytic function is C∞.

Example 11.2.11. (i) The power series

exp(z) =
∞∑
k=0

zk

k!

converges absolutely for any z ∈ C because the series

∞∑
k=0

|z|k

k!

converges to e|z| <∞ for any z ∈ C.

Thus the complex exponential function exp(z) = ez is entire, and its derivative f ′(z) is
itself.



(ii) The complex sine function is defined by the power series

sin(z) =
∞∑
k=0

(−1)nz2n+1

(2n + 1)!

which converges everywhere because
∞∑
k=0

|z|2n+1

(2n + 1)!

converges to sin |z| <∞.

The complex sine function sin(z) is entire and its derivative is the next function.

(iii) Similarly, the complex cosine function

cos(z) =
∞∑
k=0

(−1)nz2n

(2n)!

is entire as well and its derivative is − sin(z).

Proposition 11.2.12 (Euler’s Formula). For every t ∈ C there holds

exp(it) = cos(t) + i sin(t).

See the book for the proof.

Example 11.2.13. We already learned by Theorem 11.2.8 part (i) that the complex
exponential function is entire.

This means that the Cauchy-Riemnan equations should hold for the exp(z).

From Euler’s Formula we have

exp(z) = ex+iy = exeiy = ex(cos y + i sin y) = ex cos y + iex sin y.

The functions u(x, y) = ex cos y and v(x, y) = ex sin y satisfy

∂u

∂x
= ex cos y =

∂v

∂y
and

∂u

∂y
= −ex sin y = −∂v

∂x
,

which are the Cauchy-Riemann equations.

Example 11.2.14. We can use the exponential map to define a function f from C to
Mn(C) = B(Cn) by

f(z) =
∞∑
k=0

(Az)k

k!
.

This series converges everywhere because
∞∑
k=0

‖A‖k|z|k

k!
= exp(‖A‖ |z|) <∞.

The function f is holomorphic with derivative

f ′(z) =
∞∑
k=1

k
Akzk−1

k!
= A

∞∑
k=1

(Az)k−1

(k − 1)!
= A

∞∑
k=0

(Az)k

k!
= A exp(Az).


