Math 346 Lecture \#25

11.2 Properties and Examples

Holomorphic functions satisfy all of the usual rules of differentiation, whether they are complex valued or more general complex Banach space X-valued. We will consider the case of $X=M_{n}(\mathbb{C})$ in Chapter 12.
Holomorphic functions also have a very close connection to convergent power series. The first part of this connection - that every convergent power series is holomorphic - we will see in this section.

Throughout this section $\left(X,\|\cdot\|_{X}\right)$ is a complex Banach space.

11.2.1 Basic Properties

Remark 11.2.1. For an open subset U of \mathbb{C}, a function $f: U \rightarrow X$ is continuous on U when f is holomorphic on U, because complex differentiability at a point implies continuity at that point (see Corollary 6.3.8).
Theorem 11.2.2. For U open in \mathbb{C}, suppose $f, g: U \rightarrow \mathbb{C}$ are holomorphic.
(i) For any constants $a, b \in \mathbb{C}$, the function $a f+b g$ is holomorphic on U.
(ii) The product $f g$ is holomorphic on U and

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

(iii) If $g(z) \neq 0$ on U, then f / g is holomorphic on U and

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

(iv) For $k \in \mathbb{N}$ and $a_{0}, a_{1}, \ldots, a_{k} \in \mathbb{C}$, the polynomial $z \rightarrow a_{0}+a_{1} z+\cdots+a_{k} z^{k}$ is entire and its derivative is

$$
z \rightarrow a_{1}+2 a_{2} z+\cdots+k a_{k} a^{k-1}
$$

(v) For $m, n \in \mathbb{N}, a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$, and $b_{0}, b_{1}, \ldots, b_{m} \in \mathbb{C}$, the rational function

$$
z \rightarrow \frac{a_{0}+a_{1} z+\cdots+a_{n} z^{n}}{b_{0}+b_{1} z+\cdots+b_{m} z^{m}}
$$

is holomorphic on the open set $\mathbb{C} \backslash\{$ complex roots of the denominator $\}$.
Theorem 11.2.3 (Chain Rule). For open sets U, V in \mathbb{C}, if $f: U \rightarrow \mathbb{C}$ and $g: V \rightarrow \mathbb{C}$ are holomorphic, and $f(U) \subset V$, then $f \circ g: U \rightarrow \mathbb{C}$ is holomorphic and

$$
(f \circ g)^{\prime}(z)=f^{\prime}(g(z)) g^{\prime}(z) \text { for all } z \in U .
$$

The proof of this follows from Theorem 6.4.7.
Proposition 11.2.4. For an open and path-connected U in \mathbb{C}, if $f: U \rightarrow X$ is holomorphic and $f^{\prime}(z)=0$ for all $z \in U$, then f is constant on U, i.e., there exists $\mathrm{x} \in X$ such that $f(z)=\mathrm{x}$ for all $z \in U$.

Proof. For any $z_{1}, z_{2} \in U$ there is a smooth path $g:[0,1] \rightarrow U$ such that $g(0)=z_{1}$ and $g(1)=z_{2}$.
The composition $f \circ g$ is C^{1} on $(0,1)$ and its derivative $(f \circ g)^{\prime}$ is continous on $[0,1]$; these follows because f and g are both differentiable, and the hypothesis $f^{\prime}(z)=0$ for all $z \in U$ implies that the derivative $(f \circ g)^{\prime}(t)=f^{\prime}(g(t)) g^{\prime}(t)$ is the zero function which is continuous.
By the Fundamental Theorem of Calculus we have

$$
f\left(z_{2}\right)-f\left(z_{1}\right)=f(g(1))-f(g(0))=\int_{[0,1]}(f \circ g)^{\prime}=\int_{[0,1]} 0=0
$$

Since z_{1}, z_{2} are arbitrary points of the path connected open U, we obtain that f is constant on U.

11.2.2 Convergent Power Series are Holomorphic

We review some of the basic theory of convergent power series, some of which you saw in Math 341, and then prove that a convergent power series in a complex variable is holomorphic.
We look at more general power series as follows. For $a_{k} \in X, k=0,1,2, \ldots$, and $z_{0} \in \mathbb{C}$, a power series in X is

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k} .
$$

For each $r>0$ and each $n=0,1,2, \ldots$, the partial sum

$$
f_{n}(z)=\sum_{k=0}^{n} a_{k}\left(z-z_{0}\right)^{k}
$$

is a function belonging to the Banach space

$$
\left(L^{\infty}\left(\overline{B\left(z_{0}, r\right)}, X\right),\|\cdot\|_{\infty}\right)
$$

where

$$
\|g\|_{\infty}=\sup _{z \in \overline{B\left(z_{0}, r\right)}}\|g(z)\|_{X}
$$

Convergence of the sequence of partial sums is always with respect to this Banach space, i.e., the topology of uniform convergence on compact sets.

A power series converges on an open set U if it converges on every compact subset of U. Lemma 11.2.5 (Abel-Weierstrass Lemma). For a sequence $a_{0}, a_{1}, a_{2}, \cdots \in X$, if there exist an $R>0$ and $M>0$ such that for all $n=0,1,2, \ldots$ there holds

$$
\left\|a_{n}\right\|_{X} R^{n} \leq M
$$

then for any $0<r<R$, the two series

$$
\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k} \text { and } \sum_{k=0}^{\infty} k a_{k}\left(z-z_{0}\right)^{k-1}
$$

(the second being the formal term-by-term derivative of the first) both converge uniformly and absolutely on $\overline{B\left(z_{0}, r\right)} \subset \mathbb{C}$.
See the book for the proof.
Corollary 11.2.6. If a series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ diverges when $z=z_{1}$, then the series diverges at every $z \in \mathbb{C}$ that satisfies $\left|z-z_{0}\right|>\left|z_{1}-z_{0}\right|$.
Proof. This is the contrapositive of the Abel-Weierstrass Lemma.
Definition 11.2.7. Suppose a power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ converges on $\overline{B\left(z_{0}, r\right)}$ for some $r>0$. The radius of convergence of the series is the supremum of the values of $R>0$ for which the series converges uniformly on all compact subsets of the open $B\left(z_{0}, R\right)$.
The supremum is ∞ if the series converges uniformly on all compact subsets of $B\left(z_{0}, R\right)$ for all $R>0$, and we say the radius of convergence is ∞.
Theorem 11.2.8. If a power series $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ converges uniformly on compact subsets of $B\left(z_{0}, R\right)$, then
(i) the function f is holomorphic on $B\left(z_{0}, R\right)$, and
(ii) the series $g(z)=\sum_{k=1}^{\infty} k a_{k}\left(z-z_{0}\right)^{k-1}$ converges uniformly on compact subsets of $B\left(z_{0}, R\right)$ and $f^{\prime}(z)=g(z)$ on $B\left(z_{0}, R\right)$.

See the book for the proof.
Definition 11.2.9. For an open $U \subset \mathbb{C}$, a function $f: U \rightarrow X$ is called complex analytic (or simply analytic when there is no confusion with real analytic) if for all $z_{0} \in U$ there exists $r>0$ with $B\left(z_{0}, r\right) \subset U$ such that f can be written as a convergent power series on $B\left(z_{0}, r\right)$.
Remark 11.2.10. Any analytic function $f: U \rightarrow X$ is holomorphic on U by Theorem 11.2.8 part (i), and its derivative $f^{\prime}: U \rightarrow X$ is analytic by Theorem 11.2.8 part (ii), and hence f^{\prime} is holomorphic by Theorem 11.2.8 part (i). By in induction this means that every derivative $f^{(l)}$ is holomorphic, so that an analytic function is C^{∞}.
Example 11.2.11. (i) The power series

$$
\exp (z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}
$$

converges absolutely for any $z \in \mathbb{C}$ because the series

$$
\sum_{k=0}^{\infty} \frac{|z|^{k}}{k!}
$$

converges to $e^{|z|}<\infty$ for any $z \in \mathbb{C}$.
Thus the complex exponential function $\exp (z)=e^{z}$ is entire, and its derivative $f^{\prime}(z)$ is itself.
(ii) The complex sine function is defined by the power series

$$
\sin (z)=\sum_{k=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}
$$

which converges everywhere because

$$
\sum_{k=0}^{\infty} \frac{|z|^{2 n+1}}{(2 n+1)!}
$$

converges to $\sin |z|<\infty$.
The complex sine function $\sin (z)$ is entire and its derivative is the next function.
(iii) Similarly, the complex cosine function

$$
\cos (z)=\sum_{k=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}
$$

is entire as well and its derivative is $-\sin (z)$.
Proposition 11.2.12 (Euler's Formula). For every $t \in \mathbb{C}$ there holds

$$
\exp (i t)=\cos (t)+i \sin (t)
$$

See the book for the proof.
Example 11.2.13. We already learned by Theorem 11.2 .8 part (i) that the complex exponential function is entire.
This means that the Cauchy-Riemnan equations should hold for the $\exp (z)$.
From Euler's Formula we have

$$
\exp (z)=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)=e^{x} \cos y+i e^{x} \sin y
$$

The functions $u(x, y)=e^{x} \cos y$ and $v(x, y)=e^{x} \sin y$ satisfy

$$
\frac{\partial u}{\partial x}=e^{x} \cos y=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-e^{x} \sin y=-\frac{\partial v}{\partial x}
$$

which are the Cauchy-Riemann equations.
Example 11.2.14. We can use the exponential map to define a function f from \mathbb{C} to $M_{n}(\mathbb{C})=\mathscr{B}\left(\mathbb{C}^{n}\right)$ by

$$
f(z)=\sum_{k=0}^{\infty} \frac{(A z)^{k}}{k!}
$$

This series converges everywhere because

$$
\sum_{k=0}^{\infty} \frac{\|A\|^{k}|z|^{k}}{k!}=\exp (\|A\||z|)<\infty
$$

The function f is holomorphic with derivative

$$
f^{\prime}(z)=\sum_{k=1}^{\infty} k \frac{A^{k} z^{k-1}}{k!}=A \sum_{k=1}^{\infty} \frac{(A z)^{k-1}}{(k-1)!}=A \sum_{k=0}^{\infty} \frac{(A z)^{k}}{k!}=A \exp (A z)
$$

