
Math 346 Lecture #28
11.5 Consequences of Cauchy’s Integral Formula

We saw in Section 11.4 some consequences of Cauchy’s Integral formula, namely Gauss’s
Mean Value Theorem and Cauchy’s Differentiation formula. We look at more conse-
quences of Cauchy’s Integral formula in this lecture. Some of these consequences only hold
for complex-valued holomorphic functions and not the more general complex Banach-
space value holomorphic functions. We will point which is the case for each consequence.

As always, we let (X, ‖ · ‖X) be a complex Banach space.

11.5.1 Liouville’s Theorem

The following consequence of Cauchy’s Differentiation formula holds for complex Banach
space valued holomorphic functions.

Theorem 11.5.1 (Liouville’s Theorem). If f : C→ X is entire and bounded, i.e.,
there is M > 0 such that ‖f(z)‖X ≤M for all z ∈ C, then f is a constant function.

Proof. Fix z0 ∈ C and the circle γ in C with center z0 and radius R > 0.

We use the standard parameterization of γ, namely γ(θ) = z0 +Reiθ, θ ∈ [0, 2π].

By the assumed boundedness of f and Cauchy’s Differentiation formula we have
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This inequality holds for all R > 0 implying that ‖f ′(z0)‖X = 0.

The arbitrariness of z0 ∈ C implies that f ′(z0) = 0 for all z0 ∈ C.

By Proposition 11.2.4, the entire function f is constant. �

Example 11.5.2. The nonconstant entire functions cos(z) and sin(z) are bounded when
z ∈ R, but by Liouville’s Theorem are not bounded on C. You have HW (Exercise 11.20)
to find sequences {zn} and {wn} in C for which | sin(zn)| → ∞ and | cos(wn)| → ∞. You
are given a hint for sin(z), but here are some better hints: for z = x+ iy, there holds

sin(z) = sinx cosh y + i cosx sinh y, cos(z) = cos x cosh y − i sinx sinh y.



Example. A complex Banach space is the complex vector space Mn(C) equipped with
the induced matrix norm ‖ · ‖∞. The function f : C→M2(C) defined by

f(z) =

[
1 0
0 z

]
is entire because for any z0 ∈ C we have

lim
z→z0

f(z)− f(z0)
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= lim
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1
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[
0 0
0 z − z0

]
=

[
0 0
0 1

]
.

The entire function f is not constant, and so by the contrapositive of Liouville’s Theorem
its norm is not bounded; explicitly we have

‖f(z)‖∞ = max{1, |z|} → ∞

as |z| → ∞.

This matrix valued function f is readily generalized to n ≥ 3.

This next result only holds for complex-valued entire functions.

Corollary 11.5.3. If f : C → C is entire and there exists ε > 0 such that |f(z)| ≥ ε
for all z ∈ C, i.e., uniformly bounded away from zero, then f is constant.

Proof. The assumptions of f : C→ C and |f(z)| ≥ ε for all z ∈ C imply that∣∣∣∣ 1

f(z)

∣∣∣∣ ≤ 1

ε

for all z ∈ C.

Since f is entire and bounded away from zero, the function 1/f is entire.

By Liouville’s Theorem, with M = 1/ε, the function 1/f is a constant function, i.e., there
is c ∈ C such that 1/f(z) = c for all z ∈ C.

The constant c satisfies 1 = f(z)c for all z ∈ C, implying that c 6= 0.

Thus f(z) = 1/c for all z ∈ C. �

11.5.2 The Fundamental Theorem of Algebra

We use Corollary 11.5.3 to show that a nonconstant polynomial function f from C to C
has at least one root, i.e., there is z0 ∈ C such that f(z0) = 0.

Theorem 11.5. (Fundamental Theorem of Algebra). Every nonconstant poly-
nomial function from C to C has at least one root in C.

Proof. Let f : C→ C be nonconstant polynomial of degree k ≥ 1: there are coefficients
b0, b1, . . . , bk−1, bk ∈ C with bk 6= 0 such that

f(z) = bkz
k + bk−1z

k−1 + · · ·+ b1z + b0.

Define the nonconstant polynomial p : C→ C by

p(z) = zk + ak−1z
k−1 + · · ·+ a1z + a0



where

aj =
bj
bk
, j = 0, 1, . . . , k − 1.

The polynomial p is a monic polynomial with the same roots (if any) as f .

Set a = max{|ak−1|, . . . , |a1|, |a0|}.
There are two cases to consider: a = 0 and a > 0.

In the case of a = 0, we have p(z) = zk and this polynomial has z0 = 0 as a root.

For the case of a > 0 suppose that p does not have any roots.

By the “reverse” triangle inequality |c| − |d| ≤ |c − d| applied to c = zk and d =
−(ak−1z

k−1 + · · ·+ a1z + a0) we obtain

|p(z)| = |c− d| ≥ |c| − |d| = |zk| − |ak−1zk−1 + · · ·+ a1z + a0|.

By repeated use of the triangle inequality we have

|ak−1zk−1 + · · ·+ a1z + a0| ≤ |ak−1zk−1|+ · · ·+ |a1z|+ |a0|
= |ak−1| |z|k−1 + · · ·+ |a1| |z|+ |a0|
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= ka(|z|k−1 + · · ·+ |z|+ 1).

Thus
−|ak−1zk−1 + · · ·+ a1z + a0| ≥ −ka(|z|k−1 + · · ·+ |z|+ 1).

Set R = max{(k + 1)a, 1}.
Then R ≥ 1 and R ≥ (k + 1)a, the latter implying that R− ka ≥ a.

Because R ≥ 1 we have for all j = 0, 1, 2, . . . , k − 2 that

|z|j ≤ |z|k−1,

whence for all j = 0, 1, 2, . . . , k − 2 that

−|z|j ≥ −|z|k−1.

Thus for |z| ≥ R there holds

|p(z)| ≥ |z|k −
(
|ak−1| |z|k−1 + · · ·+ |a1| |z|+ |a0|

)
≥ |z|k − a(|z|k−1 + · · ·+ |z|+ 1)

≥ |z|k − a(|z|k−1 + · · ·+ |z|k−1 + |z|k−1)
= |z|k − ka|z|k−1

= |z|k−1(|z| − ka)

≥ |z| − ka
≥ R− ka
≥ a.



This says that p has no roots on the set {z ∈ C : |z| ≥ R} and that p is uniformly
bounded away from 0 on this set.

Our assumption that p has no roots means that the continuous function z → |p(z)| on
the compact set {z ∈ C : |z| ≤ R} is bounded away from zero on this set.

Thus there exists ε > 0 such that |p(z)| ≥ ε for all z ∈ C.

By Corollary 11.5.3. we conclude that p(z) is a constant function, which is a contradic-
tion.

Therefore the nonconstant function p has a root. �.

Remark. The Fundamental Theorem of Algebra is an existence result – its proof does
not give an algorithm for finding the roots. You have it as HW (Exercise 11.21) to show
that a polynomial pn(z) of degree n has exactly n roots (counting multiple roots). Hint:
use the Fundamental Theorem of Algebra to find a root, say zn of pn(z), then form a
new polynomial pn−1(z) of degree n− 1 obtained by dividing pn(z) by the factor z − zn.
Is there a root zn−1 of pn−1?

11.5.3 The Maximum Modulus Principle

For an open set U in C and a holomorphic function f : U → C, the continuous function
z → |f(z)|, on any compact subset K of U , attains its maximum value at some point of
K by the Extreme Value Theorem. When the open interior of K is a nonempty and path-
connected, the Maximum Modulus Principle states that the point where the maximum
of |f | is attained must be on the boundary of K.

The Maximum Modulus Principle is a consequence of the following results that apply to
general complex Banach spaced valued holomorphic functions. The book states Lemma
11.5.6 only for complex-valued holomorphic functions, but its proof works for general
complex Banach spaced value holomorphic functions.

Lemma 11.5.6. For an open U in C and f : U → X holomorphic, if ‖f‖X attains its
supremum at z0 ∈ U , then ‖f‖X is constant in every open ball B(z0, r) whose closure
B(z0, r) is contained in U .

Proof. Let r > 0 be such that B(z0, r) ⊂ U .

By Gauss’s Mean Value Theorem (Corollary 11.4.3), with the standard parameterization
of the boundary of B(z0, r), we have
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which implies that
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Since ‖f(z0)‖X ≥ ‖f(z0 + reiθ)‖X for all θ ∈ [0, 2π], the continuous integrand satisfies

‖f(z0)‖X − ‖f(z0 + reiθ)‖X ≥ 0.

The integral of a nonnegative continuous function being zero implies that the integrand
is the zero function (see the HW problem 8.6).

Thus ‖f(z0 + reiθ)‖X = ‖f(z0)‖X for all θ ∈ [0, 2π].

The same argument shows that for any 0 < ε < r there holds ‖f(z0 + εeiθ)‖X = ‖f(z0)‖X
for all θ ∈ [0, 2π].

This implies that ‖f‖X is constant on B(z0, r). �

Lemma (Precursor to Maximum Modulus Theorem). For U an open, path-
connected subset of C and f : U → X holomorphic, if ‖f‖X is not constant on U , then
the continuous function z → ‖f(z)‖X never attains its supremum on U .

Proof. We proceed by way of contradiction: suppose that ‖f‖X is not constant on U but
that ‖f‖X attains its supremum at some point z0 ∈ U .

Since ‖f‖X is non constant and ‖f(z0)‖X is the maximum of ‖f‖X on U , there exists
w ∈ U \ {z0} such that ‖f(w)‖X < ‖f(z0)‖X .

By the path-connectedness of U , there is a contour γ : [a, b] → U with γ(a) = z0 and
γ(b) = w.

Since γ is compact and U c is closed, the quantity

ε = d(γ, U c) = inf{|c− d| : c ∈ γ, d ∈ U c}

is positive (see Exercise 5.33).

An open cover of γ is the collection of open balls

{B(γ(t), ε) : t ∈ [a, b]}

where for each γ(t) there holds B(γ(t), ε/2) ⊂ U by the definition of ε.

By compactness of γ there is a finite subcover of these open balls.

WLOG we choose finitely open balls B(γ(tj), ε), j = 0, . . . , n, where the values of tj
satisfy

a = t0 < t1 < · · · < tn−1 < tn = b,



and, writing zj = γ(tj) for j = 0, 1, . . . , n− 1 and w = γ(tn), that

zj, zj+1 ∈ B(zj, ε) ∩B(zj+1, ε) for all j = 0, . . . , n− 1.

[This last condition means that the arclength between consequent points zj, zj+1 on γ is
smaller than ε/2.]

Because ‖f(z0)‖X is the maximum of ‖f‖X on U , we have by Lemma 11.5.6 that the
function ‖f‖X is constant on B(z0, ε/2).

Since z1 ∈ B(z0, ε/2) we have that ‖f(z1)‖X = ‖f(z0)‖X .

Again by Lemma 11.5.6, the function ‖f‖X is constant on B(z1, ε/2), and this implies
since z2 ∈ B(z1, ε/2) that ‖f(z2)‖X = ‖f(z1)‖X = ‖f(z0)‖X .

Continuing this process leads to having ‖f(zn−1)‖X = ‖f(z0)‖X and that ‖f‖X is constant
on B(zn−1, ε/2).

Since w ∈ B(zn−1, ε/2), we have the contradiction ‖f(w)‖X = ‖f(z0)‖X . �

Example. We consider again the matrix valued entire function

f(z) =

[
1 0
0 z

]
∈M2(C).

For the open, path-connected set U = B(0, 2) in C, the restriction f : U → M2(C) is
holomorphic and in terms of the induced matrix norm ‖ · ‖∞, we have

‖f(z)‖∞ =

{
1 if z ∈ B(0, 1),

|z| if z ∈ B(0, 2) \B(0, 1).

The nonconstant function ‖f‖∞ does not attain is supremum of 2 on U .

To get the Maximum Modulus Principle as stated at the beginning of this subsection, we
restrict to complex valued holomorphic functions f . We do this so we can use Proposition
11.1.7 which states that if |f | is constant on an open, path-connected set, then f is
constant. For general complex Banach spaces it is not true that ‖f‖X is constant on an
open, path-connected set implies f is constant, as illustrated next.

Example. We consider again the matrix valued entire function

f(z) =

[
1 0
0 z

]
∈M2(C).

For the open, path-connected set U = B(0, 1) in C, the restriction f : U → M2(C) is a
nonconstant holomorphic function.

But in terms of the induced matrix norm ‖ · ‖∞, we have ‖f(z)‖∞ = 1 for all z ∈ U .

Theorem 11.5.5 (The Maximum Modulus Principle). For an open, path-
connected U in C and a holomorphic f : U → C, if f is not constant on U , then
|f | does not attain its supremum on U .



Proof. We proceed by way of the contrapositive: suppose |f | attains its supremum on U .

By the contrapositive of the Precursor to the Maximum Modulus Principle, the contin-
uous function |f | is constant.

By Proposition 11.1.7, the function f is constant on U . �

The next result, a corollary of the Maximum Modulus Principle, is stated in an imprecise
manner in the book. Here is a precise version.

Corollary 11.5.7. For a compact set D whose interior D◦ is nonempty and path-
connected, if f : D → C is continuous and holomorphic on D◦, then |f | attains is
maximum on the boundary of D.

Proof. Continuity of function |f | : D → R on the compact D implies that |f | attains its
maximum at some point in D.

If f a constant function, then |f | is a constant function, and the maximum of |f | is
attained at every point of D, including all boundary points of D.

If f is not a constant function, then the Maximum Modulus Principle implies that the
maximum of |f | cannot be achieved on D◦, hence that the maximum of |f | is achieved
on the boundary of D. �


