
Math 346 Lecture #30
11.7 The Residue Theorem

The Residue Theorem is the premier computational tool for contour integrals. It includes
the Cauchy-Goursat Theorem and Cauchy’s Integral Formula as special cases. To state
the Residue Theorem we first need to understand isolated singularities of holomorphic
functions and quantities called winding numbers.

As always we let (X, ‖ · ‖X) be a complex Banach space.

11.7.1 Isolated Singularities

Definition 11.7.1. For a point z0 ∈ C, an ε > 0, and the punctured open disk
U = {z ∈ C : 0 < |z− z0| < ε}, for f : U → X holomorphic, we say that z0 is an isolated
singularity of f if f is not assumed complex differentiable at z0.

For an isolated singularity z0 of f the principal part of the Laurent series

∞∑
k=−∞

ak(z − z0)k

of f on B(z0, ε) \ {z0} is the series

−1∑
k=−∞

ak(z − z0)k.

We use the principal part to classify the isolated singularities.

An isolated singularity z0 of f is called a removable singularity if the principal part of
the Laurent series of f about z0 is zero, i.e., ak = 0 for all k = −1,−2,−3, . . . .

If f has a removable singularity at z0, then f extends to a holomorphic function on
B(z0, ε) by means of the power series

∑∞
k=0 ak(z − z0)k convergent on B(z0, ε).

An isolated singular z0 of f is called a pole of order N ∈ N if the principal part of the
Laurent series of f about z0 has the form

f(z) =
−1∑

k=−N

ak(z − z0)k,

i.e., ak = 0 for all k < −N in the Laurent series for f about z0.

A pole of order 1 is called a simple pole.

An isolated singularity z0 of f is called an essential singularity if the principal part of the
Laurent series for f about z0 has infinitely many nonzero terms, i.e., ak 6= 0 for infinitely
many −k ∈ N.

Example (in lieu of 11.7.2). (i) The function

g(z) =
cos(z)− 1

z2
=

1

z2

∞∑
k=1

(−1)kz2k

(2k)!
=
∞∑
k=1

(−1)kz2k−2

(2k)!
= −1

2
+
z2

4!
+ · · ·



has a removable singular at the isolated singularity z0 = 0 of g.

(ii) The function

f(z) =
sin(z)

z3
=

1

z3

∞∑
k=0

(−1)kz2k+1

(2k + 1)!
=

1

z3
− 1

6z
+
z

5!
+ · · ·

has a pole of order N = 3 at the isolated singularity z0 = 0 of f .

(iii) The function

h(z) = sin

(
1

z

)
=
∞∑
k=0

(−1)k(1/z)2k+1

(2k + 1)!
=
∞∑
k=0

(−1)kz−2k−1

(2k + 1)!

has an essential singularity at the isolated singularity z0 = 0 of h.

Example 11.7.3. (This is actually a proposition). Suppose f and g are complex-valued
holomorphic functions on B(z0, ε) \ {z0} where f has a zero of order k at z0 and g has a
zero of order l at z0.

By Proposition 11.6.6, there exist complex-valued holomorphic functions F and G on
B(z0, ε) such that F (z0) 6= 0, G(z0) 6= 0, and

f(z) = (z − z0)kF (z) and g(z) = (z − z0)lG(z).

If k ≥ l, then the function

f(z)

g(z)
=

(z − z0)kF (z)

(z − z0)lG(z)
= (z − z0)k−l

F (z)

G(z)

has a removable singularity at z0 because (z− z0)k−l and F (z)/G(z) are holomorphic on
B(z0, ε).

If k < l, then f/g has a pole of order N = l − k at z0 because G(z) 6= 0 on a possible
smaller ball around z0.

Definition 11.7.4. For an open set U in C and finitely many distinct points z1, . . . , zn
in U , a function f : U \ {z1, . . . , zn} → X is called meromorphic if f is holomorphic on
the open set U \ {z1, . . . , zn} with f having poles at each zi.

Example 11.7.5. For polynomials p and q with q not identically equal to 0, the rational
function p(z)/q(z), in lowest terms (i.e., any common factors that p and q have have
already been cancelled), is a meromorphic function on C \ {z1, . . . , zk} where z1, . . . , zk
are the distinct roots of q.

FYI: It is standard practice is always assume that a rational function is given in lowest
terms, unless explicitly told otherwise.

11.7.2 Residues and Winding Numbers

We have already seen that the coefficient a−1 of the power (z−z0)−1 in the Laurent series
of a function f holomorphic on a punctured disk B(z0, ε) \ {z0} is the quantity needed
when computing contour integrals of f on simply closed curves with z0 in its interior.
Because of the important of this coefficient, we give it a name.



Definition 11.7.6. For a holomorphic f : B(z0, ε) \ {z0} → X and simple close curve
γ in B(z0, ε) \ {z0}, the quantity

1

2πi

‰
γ

f(z) dz

is called the residue of f at z0 and is denoted by Res(f, z0).

Proposition 11.7.7. If f : B(z0, ε) \ {z0} → X is holomorphic, then Res(f, z0) is the
coefficient a−1 of the power (z − z0)−1 in the Laurent series of f about z0.

Proof. Since the Laurent series converges uniformly on compact subsets of B(z0, ε)\{z0},
integration and summation of the Laurent series can be interchanged.

This implies for a simple closed curve γ in B(z0, ε) \ {z0} enclosing z0 that

Res(f, z0) =
1

2πi

‰
γ

f(z) dz

=
1

2πi

‰
γ

∞∑
k=−∞

ak(z − z0)k dz

=
1

2πi

∞∑
k=−∞

ak

‰
γ

(z − z0)k dz

=
a−1
2πi

‰
γ

(z − z0)−1 dz

=
a−1
2πi

2πi

= a−1

where we used Lemma 11.3.5. �

The next result provides a characterization of removable singularities, the existence of
removable singularity or a pole, and the first glimpse between isolated singularities and
residues.

Proposition 11.7.8. Suppose a holomorphic f has an isolated singularity at z0.

(i) The isolated singularity at z0 is removable if and only if limz→z0 f(z) exists (as a
complex number; the book inaccurately uses the term finite).

(ii) If for some nonnegative integer k the limit limz→z0(z−z0)kf(z) exists (as a complex
number), then the isolated singularity z0 of f is either a removable singularity or a
pole of order equal to or less than k.

(iii) If the limit limz→z0(z − z0)f(z) exists (as a complex number), then

Res(f, z0) = lim
z→z0

(z − z0)f(z).

The proof of this is HW (Exercise 11.29).

Up to this point we have mainly use simple closed contour for contour integrals.



The Residue Theorem permits closed contours that can self-intersect and wind around a
point many times.

A contour integral on a closed contour depends not only on the residue at a point but
also on the number of times the closed contour goes around that point.

Evidence for this is found by the contour integral

1

2πi

‰
γ

1

z − z0
dz

for the closed contour γ : [0, 2kπ] → C given by γ(t) = z0 + eiθ for a positive integer k.
Computing this contour integral gives

1

2πi

ˆ 2kπ

0

1

eiθ
(ieiθ) dθ =

1

2π

ˆ 2kπ

0

dθ =
2kπ

2π
= k.

The closed contour γ goes around z0 in the counterclockwise direction k times while the
residue of 1/(z − z0) at z0 is 1.

If this same curve γ is traversed in the clockwise direction, i.e., γ(θ) = z0 + e−iθ, then we
would get −k as the value of the contour integral.

Furthermore, if γ is closed contour that does not enclose z0, then 1/(z−z0) is holomorphic
on a simply connected open set containing γ but not containing z0, so that by the Cauchy-
Goursat Theorem we have

1

2πi

‰
γ

1

z − z0
dz = 0.

These observations motivate the notion of the winding number.

Definition 11.7.9. For a closed contour γ in C and z0 a point of C not on γ, the
winding number of γ with respect to z0 is the quantity

I(γ, z0) =
1

2πi

‰
γ

1

z − z0
dz.

Nota Bene 11.7.10. The winding number essentially counts the total number of times
a closed curve traverses counterclockwise around a given point not on the closed curve.

Lemma 11.7.12. For a simply connected open set U in C, a closed contour γ in U ,
and a point z0 ∈ U not on γ, if

N(z) =
∞∑
k=0

bk
(z − z0)k

is uniformly convergent on compact subsets of U \ {z0}, then there holds

1

2πi

‰
γ

N(z) dz = Res(N, z0)I(γ, z0).

The proof of this is HW (Exercise 11.30).



11.7.3 The Residue Theorem

Now that we have the notions of residue and winding number, we can state the Residue
Theorem.

Theorem 11.7.13 (The Residue Theorem). For a simply connected U in C and
finitely many points z1, . . . , zn ∈ U , if f : U \ {z1, . . . , zn} → X is holomorphic and γ is
a closed contour in U \ {z1, . . . , zn}, then

1

2πi

‰
γ

f(z) dz =
n∑
j=1

Res(f, zj)I(γ, zj).

See the book for the proof.

Remark. The Residue Theorem has the Cauchy-Goursat Theorem as a special case.
When f : U → X is holomorphic, i.e., there are no points in U at which f is not complex
differentiable, and γ in U is a simple closed curve, we select any z0 ∈ U \ γ. The residue
of f at z0 is 0 by Proposition 11.7.8 part (iii), i.e.,

Res(f, z0) = lim
z→z1

(z − z0)f(z) = 0;

hence, regardless of the value of I(γ, z0), the Residue Theorem gives‰
γ

f(z) dz = 0.

The Residue Theorem has Cauchy’s Integral formula also as special case. When f : U →
X is holomorphic, and z0 ∈ U , then the function g(z) = f(z)/(z − z0) is holomorphic on
U \ {z0}, so for any simple closed curve γ in U enclosing z0 the Residue Theorem gives

1

2πi

‰
γ

f(z)

z − z0
dz =

1

2πi

‰
γ

g(z) dz = Res(g, z0)I(γ, z0);

here I(γ, z0) = 1 because γ is a simple closed curve enclosing z0, and Res(g, z0) = f(z0)
because using the power series for f about z0 gives the Laurent series

g(z) =
f(z)

z − z0
=

1

z − z0

∞∑
k=0

f (k)(z0)

k!
(z − z0)k =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k−1

in which the coefficient of (z − z0)−1 is f(z0).

Using the Residue Theorem requires that we compute the required residues. We have
seen two ways to compute the residue of f at a point z0: by computing the Laurent series
of f on B(z0, ε) \ {z0}, or by Proposition 11.7.8 part (iii). Of the many other means of
computing Res(f, z0) we mention a few next.

Proposition 11.7.15. Suppose g : B(z0, ε)→ X and h : B(z0, ε)→ C are holomorphic.
If g(z0) 6= 0, h(z0) = 0, and h′(z0) 6= 0, then the function g(z)/h(z) : B(z0, ε) \ {z0} → X
is meromorphic with a simple pole at z0 and

Res

(
g(z)

h(z)
, z0

)
=

g(z0)

h′(z0)
.



Proof. Since h(z0) = 0, then

0 6= h′(z0) = lim
z→z0

h(z)− h(z0)

z − z0
= lim

z→z0

h(z)

z − z0
.

This implies that

lim
z→z0

z − z0
h(z)

=
1

h′(z0)
.

With g continuous at z0 and g(z0) 6= 0 and h′(z0) 6= 0, we obtain

0 6= g(z0)

h′(z0)
= lim

z→z0
(z − z0)

g(z)

h(z)
= Res

(
g(z)

h(z)
, z0

)
by Proposition 11.7.8 part (iii).

That g/h has a simple pole at z0 follows adapting Example 11.7.3.

Since h(z) = (z − z0)H(z) by Proposition 11.6.6 we have

g(z)

h(z)
= (z − z0)−1

g(z)

H(z)
.

The function g/H is holomorphic on some ball B(z0, ε) and therefore has a power series
expansion in powers of (z − z0).
Multiplying the power series for g/H at z0 by (z − z0)−1 gives a Laurent series for g/h
with nonzero coefficient Res(g/h, z0) of (z − z0)

−1 and zero coefficients for the powers
(z − z0)k for all k = −2,−3,−4, . . . . �

Note. While you are responsible for knowing and using Proposition 11.6.6, you are NOT
responsible for the next two propositions on computing the residue. They are presented
so you see a least one method for computing the residue of functions at poles of order
2 and poles of order higher that 2 (and how complicated these residue computations
become for poles of order 2 or higher are).

Proposition. Suppose g : B(z0, ε) → X and h : B(z0, ε) → 0 are holomorphic. If
g(z0) 6= 0, h(z0) = 0, h′(z0) = 0, and h′′(z0) 6= 0, then g(z)/h(z) : B(z0, ε) \ {z0} → X is
meromorphic with a pole of order 2 at z0, and

Res

(
g(z)

h(z)
, z0

)
=

2g′(z0)

h′′(z0)
− 2g(z0)h

(3)(z0)

3[h′′(z0)]2
.

Proposition. Suppose g : B(z0, ε) → X and h : B(z0, ε) → 0 are holomorphic. If
g(z0) 6= 0, h(j)(z0) = 0 for all j = 0, 1, . . . , N − 1, and h(N)(z0) 6= 0, then g/h : B(z0, ε)→
X has a pole of order N at z0, and the residue of g/h at z0 is the product of[

N !

h(N)(z0)

]N



and the symbolic determinant obtained by cofactor expansion along the last column of
the N ×N matrix

h(N)(z0)

N !
0 0 · · · 0 g(z0)

h(N+1)(z0)

(N + 1)!

h(N)(z0)

N !
0 · · · 0 g(1)(z0)

h(N+2)(z0)

(N + 2)!

h(N+1)(z0)

(N + 1)!

h(N)(z0)

N !
· · · 0

g(2)(z0)

2!
...

...
...

. . .
...

h(2N−2)(z0)

(2N − 2)!

h(2N−3)(z0)

(2N − 3)!

h(2N−4)(z0)

(2N − 4)!
· · · h(N)(z0)

N !

g(N−2)(z0)

(N − 2)!

h(2N−1)(z0)

(2N − 1)!

h(2N−2)(z0)

(2N − 2)!

h(2N−3)(z0)

(2N − 3)!
· · · h(N+1)(z0)

(N + 1)!

g(N−1)(z0)

(N − 1)!



.

Remark. Unfortunately for an essential singularity of f at z0 there are no “simple”
formulas for computing the residue of f at z0. We typically rely on finding the Laurent
series for f at z0 to find its residue at z0.

Example (in lieu of 11.7.16). For the holomorphic function f(z) = 1/(z2 + 1) the
numerator is g(z) = 1 and the denominator is h(z) = z2 + 1.

The roots of h(z) = (z − i)(z + i) are z1 = i and z2 = −i, i.e., h(z1) = 0 and h(z2) = 0.

Since h′(z) = 2z we have h′(z1) = 2i 6= 0 and h′(z2) = −2i 6= 0.

By Proposition 11.7.15, the function f has a simple pole at each of z1 and z2 where

Res(f, z1) =
g(z1)

h′(z1)
=

1

2i
and Res(f, z2) =

g(z2)

h′(z2)
= − 1

2i
.

The simple closed contour γ = {z ∈ C : |z| = 2}, i.e., the circle centered at 0 with radius
2, encloses both simple poles of f .

For the winding numbers we have I(γ, z1) = 1 and I(γ, z2) = 1.

By the Residue Theorem we compute

1

2πi

‰
γ

f(z) dz =
2∑
j=1

Res(f, zj)I(γ, zj) =
1

2i
− 1

2i
= 0.

Example 11.7.17. We now show how to use the Residue Theorem to compute the
value of improper real-valued integrals of the formˆ ∞

−∞
f(x) dx.

We will do this for

f(x) =
1

1 + x4
.



The improper integral of f over R converges by a comparison test with 1/(1 + x2), i.e.,
since 1 + x4 ≥ 1 + x2, then

0 ≤ 1

1 + x4
≤ 1

1 + x2

and the improper integral of 1/(1 + x2) converges because

ˆ ∞
−∞

1

1 + x2
dx = lim

R→∞
arctan(x)

∣∣∣∣R
−R

= π <∞.

Convergence of the improper integral of 1/(1 + x4) over R justifies writing

ˆ ∞
−∞

1

1 + x4
dx = lim

R→∞

ˆ R

−R

1

1 + x4
dx.

We recognize that the integrand is equal to the complex-valued function

f(z) =
1

1 + z4

when z ∈ R.

The function f(z) is complex differentiable except at the four roots of the denominator
h(z) = 1 + z4.

We can find these four roots using Euler’s Formula as follows.

By writing −1 = eiπ+2inπ for an arbitrary integer n, the equation 1 + z4 = 0 becomes
eiπ+2inπ = z4.

Taking fourth roots of both sides of this equation gives eiπ/4+niπ/2 = z.

The root complex roots of h(z) = z4 + 1 are correspond to the four distinct angles π/4,
3π/4, 5π/4, 7π/4 in [0, 2π); the four roots are

z1 = eiπ/4, z2 = e3iπ/4, z3 = e5iπ/4, z4 = e7iπ/4.

There is one root in each quadrant of the complex plane.

The function f is meromorphic on C \ {z1, z2, z3, z4}.
Since h′(z) = 4z3 and h′(zj) 6= 0 for all j = 1, 2, 3, 4, each point zj is a simple pole for
f(z) = 1/h(z) with residue

Res(f, zj) =
1

h′(zj)
.

Now for the “magic” of the Residue Theorem.

For R ≥ 2, form the closed simple contour D that is the sum of the line γ from −R to R
and the top half C of the circle with center 0 and radius R traversed counterclockwise.

This gives

‰
D

f(z)dz =

ˆ
γ

f(z) dz +

ˆ
C

f(z) dz =

ˆ R

−R

1

1 + x4
dx+

ˆ
C

f(z) dz.



The contour D encloses two simple poles of f(z), the two in the first and second quadrant.

The residues of f at these poles are

Res(f, z1) =
1

4(eiπ/4)3
=

1

4e3iπ/4
and Res(f, z2) =

1

4(e3iπ/4)3
=

1

4e9iπ/4
.

The winding numbers of D at the poles are I(D, zj) = 1 for j = 1, 2.

By the Residue Theorem we have‰
D

1

1 + z4
dz = 2πi

[
Res

(
1

1 + z4
, z1

)
+ Res

(
1

1 + z4
, z2

)]
= 2πi

[
1

4e3iπ/4
+

1

4e9iπ/4

]
=
πi

2

[
e−3iπ/4 + e−9iπ/4

]
=
πi

2

[
e−3iπ/4 + e−iπ/4

]
=
πi

2

[
cos(3π/4)− i sin(3π/4) + cos(π/4)− i sin(π/4)

]
=
πi

2

[
− 1√

2
− i√

2
+

1√
2
− i√

2

]
=
πi

2

(
− 2i√

2

)
=

π√
2
.

By the parameterization ξ(θ) = Reiθ, θ ∈ [0, π], of C we obtain∣∣∣∣ˆ
C

1

1 + z4
dz

∣∣∣∣ =

∣∣∣∣ˆ π

0

iReiθ

1 +R4e4iθ
dθ

∣∣∣∣
≤
ˆ π

0

∣∣∣∣ iReiθ

1 +R4e4iθ

∣∣∣∣ dθ
=

ˆ π

0

R

|1 +R4e4iθ|
dθ

≤
ˆ π

0

R

|R4e4iθ| − 1
dθ

=
Rπ

R4 − 1
,

where for the last inequality we have used the “reverse” triangle inequality

|R4e4iθ| − | − 1| ≤ |R4e4iθ − (−1)|.
The upper bound on the norm of the contour integral of f(z) over C goes to 0 as R→∞,
and this implies thatˆ ∞

−∞

1

1 + x4
dx = lim

R→∞

ˆ R

−R

1

1 + x4
dx =

‰
D

f(z) dz =
π√
2
.


