
Math 346 Lecture #31
12.1 Projections

Before, in Chapter 3, we used an inner product on a vector space V to define an orthogonal
projection P of V onto a subspace X of V . An algebraic property of an orthogonal
projection P is that P 2 = P (called idempotence). This property is actually sufficient to
define a projection on a vector space not necessarily equipped with an inner product.

Throughout this note, we assume that V is a vector space over F.

12.1.1 Projections

Definition 12.1.1. A linear operator P ∈ L (V ) is called a projection if P 2 = P .

Example 12.1.2. If P ∈ L (V ) is a projection, then so is I − P ∈ L (V ), where
I ∈ L (V ) is the identity operator defined by I(v) = v for all v ∈ V .

You have it as HW (Exercise 12.1) to show that I − P is a projection.

The linear operator I − P is called the complementary projection of P .

Lemma 12.1.3. If P ∈ L (V ) is a projection, then

(i) y ∈ R(P ) if and only if Py = y, and

(ii) N (P ) = R(I − P ).

Proof. (i) If Py = y, then y ∈ R(P ).

On the other hand, if y ∈ R(P ), then there exists x ∈ V such that y = Px.

Since P 2 = P we have Py = P 2x = Px = y.

(ii) We have x ∈ N (P ) if and only if Px = 0.

We also have Px = 0 if and only if (I − P )x = x− Px = x.

Because I − P is a projection by Example 12.1.2, we have by part (i) that (I − P )x = x
if and only if x ∈ R(I − P ).

Thus we have that x ∈ N (P ) if and only if x ∈ R(I − P ). �

Remark. Because I − P is a projection when P is a projection, we can apply part (ii)
of Lemma 12.1.3 to I − P to get N (I − P ) = R(P ).

We show next that a projection P on V decomposes V into the direct sum of two
complementary subspaces of V .

Theorem 12.1.4. If P ∈ L (V ) is a projection, then V = R(P )⊕N (P ).

Proof. For every x ∈ V there holds

Px + (I − P )x = Px + Ix− Px = x.

By Lemma 12.1.3, part (ii), we have R(I − P ) = N (P ), so that (I − P )x ∈ N (P ).

Thus each x ∈ V is the sum of Px ∈ R(P ) and (I − P )x ∈ N (P ).

This implies that V = R(P ) + N (P ).

To show that R(P ) ∩N (P ) = {0} we take x ∈ R(P ) ∩N (P ).



Then x ∈ R(P ), so by Lemma 12.1.3 part (i) we have Px = x.

But as x ∈ N (P ), we have Px = 0.

Thus 0 = Px = x, giving V = R(P )⊕N (P ). �

Corollary 12.1.5. For dim(V ) <∞, if P ∈ L (V ) is a projection with S = [s1, . . . , sk]
a basis for R(P ) and T = [t1, . . . , tl] a basis for N (P ), then S ∪ T is a basis for V (i.e.,
k + l = dim(V )) and the block matrix representation of P in the basis S ∪ T is[

I 0
0 0

]
where I is the k × k identity matrix, and each 0 is a zero matrix of appropriate size.

Proof. By Theorem 12.1.4 the union S ∪ T is a basis for V .

By Theorem 4.2.9, the block matrix representation of P in the basis S ∪ T is[
A11 0
0 A22

]
where A11 is the k × k matrix representation of P on R(P ), and A22 is the l × l matrix
representation of P on N (P ).

By Lemma 12.1.3 part (i), P is the identity map on R(P ) so that A11 = I.

Since Px = 0 for each x ∈ N (P ), we have A22 = 0. �

Theorem 12.1.6. For subspaces W1 and W2 of V (not assumed finite dimensional), if
V = W1 ⊕W2, then there exists a unique projection P ∈ L (V ) such that R(P ) = W1

and N (P ) = W2.

Proof. From V = W1 ⊕W2, there is for each x ∈ V unique x1 ∈ W1 and unique x2 ∈ W2

such that x = x1 + x2.

Define P : V → V by Px = x1.

Since x1 = x1 + 0 for x1 ∈ W1, then Px1 = x1.

Hence P 2x1 = P (Px1) = Px1 = x1, so that P 2 = P on W1.

Since x2 = 0 + x2 for x2 ∈ W2, then Px2 = 0.

Hence P 2x2 = P (Px2) = P0 = 0 (since 0 ∈ W1).

Thus P 2 = P on V = W1 ⊕W2.

To show that P is linear, we let x = x1 + x2 and y = y1 + y2, where x1, y1 ∈ W1 and
x2, y2 ∈ W2.

Then for a, b ∈ C we have

ax + by = (ax1 + by1) + (ax2 + by2)

where ax1 + by1 ∈ W1 and ax2 + by ∈ W2 because W1 and W2 are subspaces.



This gives

P (ax + by) = P
(
(ax1 + by) + (ax2 + by2)

)
= ax1 + by1

= aP (x) + bP (y).

Thus P is linear with R(P ) = W1 and N (P ) = W2.

If Q ∈ L (V ) is another projection with R(Q) = W1 and N (Q) = W2, then for all
x = x1 + x2 ∈ W1 ⊕W2 there holds

Px = Px1 + Px2 = x1 = Qx1 = Qx1 +Qx2 = Qx.

This shows that P = Q on V , so that P is unique. �

Definition. The unique projection P ∈ L (V ) associated to V = W1 ⊕W2 in Theorem
12.1.6 is called the projection onto W1 along W2.

For a projection P ∈ L (V ), we have by Theorem 12.1.4 that V = R(P ) ⊕N (P ), so
that with W1 = R(P ) and W2 = N (P ), the projection P is the unique projection onto
R(P ) along N (P ).

We sometimes says that a projection P is a projection onto R(P ) without reference to
along N (P ) because the along part is always given by N (P ).

Keep in mind that there do exist distinct projections P,Q ∈ L (V ) with R(P ) = R(Q)
but N (P ) 6= N (Q). For example, the projections P,Q ∈ L (C2) defined by P (e1) = e1,
P (e2) = 0, Q(e1) = e1, and Q(e1 + e2) = 0 has the same range but different kernels.

Remark. In a finite dimensional inner product space V , the projection P onto W1 along
W2 is an orthogonal projection only when W2 = W⊥

1 . In an infinite dimensional inner
product space, a projection P onto W1 along W2 is an orthogonal projection only when
W1 is a closed subspace and W2 = W⊥

1 .

Example (in lieu of 12.1.7). Consider the vector space V = C([0, 1],C) equipped
with the inner product

〈f, g〉 =

ˆ 1

0

f(t)g(t) dt.

Define the operator P : V → V by P (f) is the constant function from [0, 1] to C with
value f(0).

The operator P is linear because for f, g ∈ V and a, b ∈ C there holds

P (af + bg) = af(0) + bg(0) = aP (f) + bP (g).

The operator P ∈ L (V ) is a projection because for all f ∈ V there holds

P 2(f) = P (f(0)) = f(0) = P (f).

The subspace R(P ) consists of the constant functions from [0, 1] to C.



The subspace N (P ) consists of those continuous functions f : [0, 1] → C such that
f(0) = 0.

By Theorem 12.1.4 there holds V = R(P ) ⊕N (P ), i.e., each function f ∈ V can be
written uniquely as

f(t) = f(0) + (f(t)− f(0))

for f(0) ∈ R(P ) and f(t)− f(0) ∈ N (P ).

With W1 = R(P ) and W2 = N (P ), we have by Theorem 12.1.6 that P is the unique
projection onto W1 along W2.

Is P an orthogonal projection? That is, is W1 closed and is W⊥
1 = W2?

The answer is no for the second condition because there exists f ∈ W1 and g ∈ W2 such
that 〈f, g〉 6= 0, i.e., for f = 1 and g(t) = t we have

〈f, g〉 =

ˆ 1

0

t dt = 1/2 6= 0.

Note. Sometimes nonorthogonal projections, such as in the previous example, are called
oblique projections.

12.1.2 Invariant Subspaces and Their Projections

Recall from Section 4.2 that a subspace W of V is invariant for L ∈ L (V ) or that W is
L-invariant if L(W ) ⊂ W .

Theorem 12.1.8. For L ∈ L (V ), a subspace W of V is L-invariant if and only if for
any projection P ∈ L (V ) onto W there holds

LP = PLP.

Proof. Suppose W is L-invariant.

Let P ∈ L (L) be a projection with R(P ) = W .

By the Remark after Lemma 12.1.3 the projection I−P satisfies N (I−P ) = R(P ) = W .

For each w ∈ W the L-invariance of W implies that Lw ∈ W , and hence for all w ∈ W
that (I − P )Lw = 0.

Since Pv ∈ W for all v ∈ V , we obtain (I − P )LPv = 0 for all v ∈ V .

This implies that (I − P )LP = 0 or rewritten that LP = PLP .

Now suppose for a projection P onto W that LP = PLP .

Since Pw = w for all w ∈ W and LP = PLP , it follows that

Lw = LPw = PLPw = PLw.

Since PLw ∈ W , we obtain Lw = PLw ∈ W , whence W is L-invariant. �

Theorem 12.1.9. Suppose W1,W2 are subspaces of V for which V = W1 ⊕W2, and
L ∈ L (V ). Then W1 and W2 are both L-invariant if and only if the projection P onto
W1 along W2 satisfies LP = PL.



Proof. Suppose both W1 and W2 are L-invariant.

Since V = W1 ⊕W2, each v ∈ V can be written uniquely as v = w1 + w2 for w1 ∈ W1

and w2 ∈ W2.

We have Pw1 = w1 and Pw2 = 0, and so LPw2 = 0.

By the L-invariance of W1 and W2 we have Lw1 ∈ W1 and Lw2 ∈ W2.

Since P is the projection onto W1 along W2 there holds PLw1 = Lw1 and PLw2 = 0.

Thus

PLv = PLw1 + PLw2 = PLw1 = Lw1 = LPw1 = LPw1 + LPw2 = LPv.

This holds for all v ∈ V so that LP = PL.

Now suppose that LP = PL for the projection P onto W1 along W2.

Then R(P ) = W1 and N (P ) = W2.

For w1 ∈ W1 we have
Lw1 = LPw1 = PLw1 ∈ W1.

This shows that W1 is L-invariant.

Because LP = PL there holds

L(I − P ) = L− LP = L− PL = (I − P )L.

By Lemma 12.1.3 part (ii), we have R(I − P ) = N (P ) = W2.

For w2 ∈ W2 we have Pw2 = 0 so that

Lw2 = L(I − P )w2 = (I − P )Lw2 ∈ W2.

This shows that W2 is L-invariant. �

12.1.3 Eigenprojections for Simple Operators

We apply the theory of projections to a simple operator on a finite dimensional vector
space, where the range of the projections are the eigenspaces of that simple operator.
This will give a decomposition of a simple operator on a finite dimensional vector space
into a sum of scalar multiplies of the projections, where the scalars are the corresponding
eigenvalues.

Recall for i, j = 1, . . . , n that δij is the (i, j)th entry of the n× n identity matrix I.

Proposition 12.1.10. Suppose A ∈ Mn(C) is a simple operator whose distinct (com-
plex) eigenvalues are λ1, . . . , λn. Let S ∈ Mn(C) be the matrix whose columns are the
corresponding right eigenvectors of A, and denote the ith column of S by ri. Let `T1 , . . . , `

T
n

be the corresponding left eigenvectors of A, i.e., the rows of S−1. Define the n×n matrices
Pk = rk`

T
k , k = 1, . . . , n. Then

(i) `Ti rj = δij for all i, j = 1, . . . , n,

(ii) PiPj = δijPi for all i, j = 1, . . . , n,



(iii) PiA = APi = λiPi for all i = 1, . . . , n,

(iv)
∑n

i=1 Pi = I, and

(v) A =
∑n

i=1 λiPi.

Proof. (i) Since r1, . . . , rn are columns of S, since `T1 , . . . , `
T
n are the rows of S−1, and

since S−1S = I we have `Ti rj = δij.

(ii) Computing we have

PiPj = ri`
T
i rj`

T
j = riδij`

T
j = δijri`

T
j =

{
ri`

T
i if j = i,

0 if i 6= j.

Since ri`
T
i = Pi, we obtain PiPj = δijPi.

(iii) Computing we have

PiA = ri`
T
i A = riλi`

T
i = λiri`

T
i = λiPi

and
APi = Ari`

T
i = λiri`

T
i = λiPi

thus giving PiA = APi = λiPi.

(iv) We notice that
n∑

i=1

Pi =
n∑

i=1

ri`
T
i

is the outer product expansion of SS−1 obtained by partitioning S into columns and S−1

into rows.

Since SS−1 = I, we obtain
∑∞

i=1 Pi = I.

(v) Using (iii) and (iv) we compute

n∑
i=1

λiPi =
n∑

i=1

APi = A
n∑

i=1

Pi = AI = A

giving the result. �

Remark. The matrices Pi are projections by part (ii) of Proposition 12.1.10 because
P 2
i = PiPi = δiiPi = Pi. The rank of each of these projections is one because the columns

of Pi are all scalar multiples of the nonzero right eigenvector ri. Indeed the range of P is
the one-dimensional eigenspace of A corresponding to the eigenvalue λi.

Definition. For a simple operator A ∈ Mn(C) the rank-1 projections P1, . . . , Pn in
Proposition 12.1.10 are called the eigenprojections of A.

Example (in lieu of 12.1.11). The eigenvalues and right eigenvectors of the simple

A =

[
1 1
4 1

]
∈M2(C)



are

λ1 = 3, r1 =

[
1
2

]
, λ2 = −1, r2 =

[
1
−2

]
.

The matrix of right eigenvectors

S =
[
r1 r2

]
=

[
1 1
2 −2

]
has inverse

S−1 = −1

4

[
−2 −1
−2 1

]
=

1

4

[
2 1
2 −1

]
.

The rows of S−1 give left eigenvectors of A:

`T1 =
1

4

[
2 1

]
, `T2 =

1

4

[
2 −1

]
.

The eigenprojections are

P1 = r1`
T
1 =

1

4

[
1
2

] [
2 1

]
=

1

4

[
2 1
4 2

]
and

P2 = r2`
T
2 =

1

4

[
1
−2

] [
2 −1

]
=

1

4

[
2 −1
−4 2

]
.

Each of P1 and P2 has rank 1, and we can verify the properties listed in Proposition
12.1.10.

For property (ii) we have

P1P2 =
1

16

[
2 1
4 2

] [
2 −1
−4 2

]
=

[
0 0
0 0

]
= 0,

P 2
1 =

1

16

[
2 1
4 2

] [
2 1
4 2

]
=

1

16

[
8 4
16 8

]
=

1

4

[
2 1
4 2

]
= P1,

P 2
2 =

1

16

[
2 −1
−4 2

] [
2 −1
−4 2

]
=

1

16

[
8 −4
−16 8

]
=

1

4

[
2 −1
−4 2

]
= P2.

For property (iii) we have

AP1 =
1

4

[
1 1
4 1

] [
2 1
4 2

]
=

1

4

[
6 3
12 6

]
,

P1A =
1

4

[
2 1
4 2

] [
1 1
4 1

]
=

1

4

[
6 3
12 6

]
=

3

4

[
2 1
4 2

]
= λ1P1

AP2 =
1

4

[
1 1
4 1

] [
2 −1
−4 2

]
=

1

4

[
−2 1
4 −2

]
,

P2A =
1

4

[
2 −1
−4 2

] [
1 1
4 1

]
=

1

4

[
−2 1
4 −2

]
= −1

4

[
2 −1
−4 2

]
= λ2P2.



For property (iv) we have

P1 + P2 =
1

4

{[
2 1
4 2

]
+

[
2 −1
−4 2

]}
=

1

4

[
4 0
0 4

]
= I.

Finally for property (v) we have

λ1P1 + λ2P2 =
3

4

[
2 1
4 2

]
− 1

4

[
2 −1
−4 2

]
=

[
1 1
4 1

]
= A.


