Math 346 Lecture #31
12.1 Projections

Before, in Chapter 3, we used an inner product on a vector space V' to define an orthogonal
projection P of V onto a subspace X of V. An algebraic property of an orthogonal
projection P is that P? = P (called idempotence). This property is actually sufficient to
define a projection on a vector space not necessarily equipped with an inner product.

Throughout this note, we assume that V' is a vector space over F.
12.1.1 Projections
Definition 12.1.1. A linear operator P € .Z(V) is called a projection if P? = P.

Example 12.1.2. If P € £(V) is a projection, then so is I — P € Z(V), where
I € Z(V) is the identity operator defined by I(v) = v for all v € V.

You have it as HW (Exercise 12.1) to show that I — P is a projection.

The linear operator I — P is called the complementary projection of P.
Lemma 12.1.3. If P € Z(V) is a projection, then
(i) v € Z(P) if and only if Py =y, and
(i) A/ (P)=2%(I — P).
Proof. (i) If Py =y, then y € Z(P).
On the other hand, if y € Z(P), then there exists x € V' such that y = Px.
Since P? = P we have Py = P?’x = Px =y.
(ii) We have x € A4/(P) if and only if Px = 0.
We also have Px = 0 if and only if (/ — P)x =x — Px =x.

Because I — P is a projection by Example 12.1.2, we have by part (i) that (I — P)x = x
if and only if x € Z(I — P).

Thus we have that x € A7(P) if and only if x € Z(I — P). O

Remark. Because I — P is a projection when P is a projection, we can apply part (ii)
of Lemma 12.1.3 to [ — P to get A (I — P) = Z(P).

We show next that a projection P on V decomposes V' into the direct sum of two
complementary subspaces of V.

Theorem 12.1.4. If P € £ (V) is a projection, then V = Z(P) @ A4 (P).
Proof. For every x € V' there holds

Px+ (I — P)x=Px+Ix— Px=x.

By Lemma 12.1.3, part (ii), we have Z(I — P) = A4 (P), so that (I — P)x € A4 (P).
Thus each x € V' is the sum of Px € Z(P) and (I — P)x € A (P).

This implies that V' = Z(P) + 4 (P).

To show that Z(P) N A (P) = {0} we take x € Z(P) N A (P).



Then x € Z(P), so by Lemma 12.1.3 part (i) we have Px = x.
But as x € A (P), we have Px = 0.
Thus 0 = Px = x, giving V = Z(P) & A (P). O

Corollary 12.1.5. For dim(V) < oo, if P € .Z(V) is a projection with S = [sy, ..., s]
a basis for Z(P) and T = [ty,...,t;] a basis for .4 (P), then SUT is a basis for V' (i.e.,
k+ 1= dim(V)) and the block matrix representation of P in the basis SUT is

I 0
00
where [ is the k£ x k identity matrix, and each 0 is a zero matrix of appropriate size.

Proof. By Theorem 12.1.4 the union S U7 is a basis for V.
By Theorem 4.2.9, the block matrix representation of P in the basis SUT is

A 0
0 Ay

where A;1l is the k x k matrix representation of P on Z(P), and As is the [ x [ matrix
representation of P on A4 (P).

By Lemma 12.1.3 part (i), P is the identity map on Z(P) so that A;; = I.
Since Px = 0 for each x € A (P), we have Agy = 0. O

Theorem 12.1.6. For subspaces W, and W5 of V' (not assumed finite dimensional), if
V = W; @ Wy, then there exists a unique projection P € £ (V) such that Z(P) = W,
and A (P) = Wj.

Proof. From V = W; & W, there is for each x € V unique x; € W and unique x, € W
such that x = x; + x».

Define P: V — V by Px = x;.

Since x; = x7 + 0 for x; € Wy, then Px; = x;.

Hence P?x; = P(Px;) = Px; = x4, so that P? = P on Wj.
Since xo = 0 + x5 for xo € Wy, then Pxy = 0.

Hence P?xy = P(Pxy) = P0 =0 (since 0 € W).

Thus P2=PonV =W, & W,.

To show that P is linear, we let x = x; + X9 and y = y; + y9, where x;,y; € W; and
Xg,y2 € Wa.

Then for a,b € C we have
ax + by = (ax; + by1) + (axg + bys)

where ax; + by, € Wi and axy + by € W5 because Wy and W5 are subspaces.



This gives

P(ax + by) = P((axy + by) + (axz + by2))
= ax1 + by,
= aP(x)+ bP(y).

Thus P is linear with Z(P) = Wy and A (P) = Wa.

If Q@ € Z(V) is another projection with Z(Q) = W; and A (Q) = W, then for all
X = X1 + X9 € Wi @& W5 there holds

PX:PX1+PX2:X1:QX1:QX1+QX2:QX.

This shows that P = ) on V, so that P is unique. O

Definition. The unique projection P € Z(V) associated to V = W; @& W, in Theorem
12.1.6 is called the projection onto Wy along Ws.

For a projection P € Z(V'), we have by Theorem 12.1.4 that V = Z(P) & A (P), so
that with W, = Z(P) and W, = A7(P), the projection P is the unique projection onto
Z(P) along A (P).

We sometimes says that a projection P is a projection onto Z(P) without reference to
along .4 (P) because the along part is always given by A4 (P).

Keep in mind that there do exist distinct projections P,Q € £ (V) with Z(P) = Z(Q)
but A (P) # A4 (Q). For example, the projections P, Q € .Z(C?) defined by P(e;) = ey,
P(es) =0, Q(e1) = e1, and Q(e; + e2) = 0 has the same range but different kernels.

Remark. In a finite dimensional inner product space V, the projection P onto W; along
W, is an orthogonal projection only when Wy = Wi, In an infinite dimensional inner
product space, a projection P onto W; along W5 is an orthogonal projection only when
W17 is a closed subspace and Wy = Wﬁ

Example (in lieu of 12.1.7). Consider the vector space V = C([0,1],C) equipped
with the inner product
/ 0]

Define the operator P : V' — V by P(f) is the constant function from [0, 1] to C with
value f(0).

The operator P is linear because for f,g € V and a,b € C there holds

P(af +bg) = af(0) +bg(0) = aP(f) + bP(g).

The operator P € Z(V) is a projection because for all f € V' there holds

The subspace Z(P) consists of the constant functions from [0, 1] to C.



The subspace .4 (P) consists of those continuous functions f : [0,1] — C such that
#(0) =o.
By Theorem 12.1.4 there holds V' = Z(P) & A (P), i.e., each function f € V can be

written uniquely as
f(t) = f0) + (f(t) — £(0))

) =
for f(0) € Z(P) and f(t) — f( ) € </V( ).
projection onto W, along Wg

we have by Theorem 12.1.6 that P is the unique

Is P an orthogonal projection? That is, is W, closed and is Wit = Wy?

The answer is no for the second condition because there exists f € W; and g € W5 such
that (f,g) # 0, i.e., for f =1 and g(t) =t we have

<f,g>:/0 Fdt=1/2 4 0.

Note. Sometimes nonorthogonal projections, such as in the previous example, are called
oblique projections.

12.1.2 Invariant Subspaces and Their Projections

Recall from Section 4.2 that a subspace W of V' is invariant for L € Z (V) or that W is
L-invariant if L(W) C W.

Theorem 12.1.8. For L € #(V), a subspace W of V is L-invariant if and only if for
any projection P € Z(V') onto W there holds

LP = PLP.

Proof. Suppose W is L-invariant.
Let P € Z(L) be a projection with Z(P) = W.
By the Remark after Lemma 12.1.3 the projection [ — P satisfies A (I —P) = Z(P) = W.

For each w € W the L-invariance of W implies that Lw € W, and hence for all w € W
that (I — P)Lw = 0.

Since Pv € W for all v € V| we obtain (I — P)LPv =0 for allv eV,
This implies that (I — P)LP = 0 or rewritten that LP = PLP.

Now suppose for a projection P onto W that LP = PLP.

Since Pw = w for all w € W and LP = PLP, it follows that

Lw=LPw=PLPw= PLw.

Since PLw € W, we obtain Lw = PLw € W, whence W is L-invariant. O

Theorem 12.1.9. Suppose Wi, W, are subspaces of V for which V = W; @ W,, and
L e £(V). Then W, and W, are both L-invariant if and only if the projection P onto
W1 along W, satisfies LP = PL.



Proof. Suppose both W, and W, are L-invariant.

Since V = W, @ Ws, each v € V can be written uniquely as v = wy + wy for w; € W;
and wy € Ws.

We have Pw; = w; and Pwy = 0, and so LPwy = 0.

By the L-invariance of W7 and W5 we have Lw; € Wi and Lwy € Wh.

Since P is the projection onto Wi along W5 there holds PLw; = Lw; and PLwy = 0.
Thus

PLv=PLw,+ PLwy=PLw, = Lwy = LPwy = LPwy + LPwy = LPv.

This holds for all v € V' so that LP = PL.
Now suppose that LP = PL for the projection P onto W; along Wj.
Then Z(P) = Wy and A (P) = Ws.

For w; € W; we have
LW1 = LPW1 = PLWl € Wl.

This shows that W, is L-invariant.
Because LP = PL there holds

LI-P)=L—-LP=L-PL=(-P)L.

By Lemma 12.1.3 part (ii), we have Z(I — P) = A (P) = Wh.
For wy € Ws we have Pwy, = 0 so that

This shows that Wy is L-invariant. O
12.1.3 Eigenprojections for Simple Operators

We apply the theory of projections to a simple operator on a finite dimensional vector
space, where the range of the projections are the eigenspaces of that simple operator.
This will give a decomposition of a simple operator on a finite dimensional vector space
into a sum of scalar multiplies of the projections, where the scalars are the corresponding
eigenvalues.

Recall for i, = 1,...,n that d;; is the (i, 7)™ entry of the n x n identity matrix I.

Proposition 12.1.10. Suppose A € M, (C) is a simple operator whose distinct (com-
plex) eigenvalues are A,...,A,. Let S € M, (C) be the matrix whose columns are the
corresponding right eigenvectors of A, and denote the i*" column of S by r;. Let £1,... (%
be the corresponding left eigenvectors of A, i.e., the rows of S~!. Define the n x n matrices
P, =10}, k=1,...,n. Then

(1) E;Ij = 61’]‘ for all Z,j = ]., e,
(i) BP; =0;;P foralli,j=1,...,n,



(i) PBA= AP, = NP, foralli=1,...,n,

(iv) >, P=1, and

(v) A=30 Mib.
Proof. (i) Since 1y,...,r, are columns of S, since ¢],... ¢ are the rows of S~!, and
since S™1S = I we have {]1; = d;;.

(ii) Computing we have

PPy =10l 1,0} = 1;0,;(] = 8;1,(] = {r ;o it =1,

= 0 if i 7.
Since 1;(] = P;, we obtain P,P; = d;; P;.
(iii) Computing we have
and
AP, = Avll = Nyl = NP,
thus giving LA = AP, = \;P,.
(iv) We notice that

n

TP
=1

i=1
is the outer product expansion of SS~! obtained by partitioning S into columns and S—*
into rows.

Since SS™! =1, we obtain > >, P, = 1.

(v) Using (iii) and (iv) we compute

zn:)\iPZ-:zn:APizAzn:Pi:AI:A
i=1 i=1 i=1

giving the result. U

Remark. The matrices P; are projections by part (ii) of Proposition 12.1.10 because
P? = P,P, = §;;P, = P,. The rank of each of these projections is one because the columns
of P; are all scalar multiples of the nonzero right eigenvector r;. Indeed the range of P is
the one-dimensional eigenspace of A corresponding to the eigenvalue ;.

Definition. For a simple operator A € M, (C) the rank-1 projections Pi,..., P, in
Proposition 12.1.10 are called the eigenprojections of A.

Example (in lieu of 12.1.11). The eigenvalues and right eigenvectors of the simple

A— B ﬂ € My(C)



are

)\1:37 r1:|:§:|7 )\2:_17 r2:|:_12:|

The matrix of right eigenvectors

has inverse

1{-2 -1
-1 _ .
-5 7

The rows of S~! give left eigenvectors of A:
1 1
le:Z[z 1], 123:1[2 —1].

The eigenprojections are
111
PlzrléT:Z :|[2 1]:

and . _ )
_ o 11 S |

Each of P, and P, has rank 1, and we can verify the properties listed in Proposition
12.1.10.

For property (ii) we have

172112 -1] o 0
PP =15 |4 2] {—4 2}:{0 0}:0’
12 172 1] 1[8 4] 1[2 1
2 _ - _ _ —
=14 2] [4 2] 16 [16 8] 4{4 2] B,

172 1172 —11 1[8 -4] 172 -1
2 - N = _ =
Py = 16 |—4 2] {—4 2] 16 [—16 8] 4 {—4 2] Ps.

For property (iii) we have

APl:i_zll 1 i ;]:}1{162 2}

paci -2 32 -
APZ:%_EL } —24 _21}_H_42 —12]

1@4:%__24 _21} le H_Hf —12]_ H—Qzl 21}_&]32



For property (iv) we have

2

nen-i{ |

Finally for property (v) we have

)\1P1+/\2P2:

A~ w

-

4 2

2
—4

1

-1
2

)



