Math 346 Lecture #31 12.1 Projections

Before, in Chapter 3, we used an inner product on a vector space V to define an orthogonal projection P of V onto a subspace X of V. An algebraic property of an orthogonal projection P is that $P^2 = P$ (called idempotence). This property is actually sufficient to define a projection on a vector space not necessarily equipped with an inner product.

Throughout this note, we assume that V is a vector space over \mathbb{F} .

12.1.1 Projections

Definition 12.1.1. A linear operator $P \in \mathscr{L}(V)$ is called a projection if $P^2 = P$.

Example 12.1.2. If $P \in \mathscr{L}(V)$ is a projection, then so is $I - P \in \mathscr{L}(V)$, where $I \in \mathscr{L}(V)$ is the identity operator defined by I(v) = v for all $v \in V$.

You have it as HW (Exercise 12.1) to show that I - P is a projection.

The linear operator I - P is called the complementary projection of P.

Lemma 12.1.3. If $P \in \mathscr{L}(V)$ is a projection, then

- (i) $y \in \mathscr{R}(P)$ if and only if Py = y, and
- (ii) $\mathcal{N}(P) = \mathscr{R}(I P).$

Proof. (i) If Py = y, then $y \in \mathscr{R}(P)$.

On the other hand, if $y \in \mathscr{R}(P)$, then there exists $x \in V$ such that y = Px.

Since $P^2 = P$ we have $Py = P^2x = Px = y$.

(ii) We have $\mathbf{x} \in \mathcal{N}(P)$ if and only if $P\mathbf{x} = 0$.

We also have Px = 0 if and only if (I - P)x = x - Px = x.

Because I - P is a projection by Example 12.1.2, we have by part (i) that $(I - P)\mathbf{x} = \mathbf{x}$ if and only if $\mathbf{x} \in \mathscr{R}(I - P)$.

Thus we have that $\mathbf{x} \in \mathcal{N}(P)$ if and only if $\mathbf{x} \in \mathcal{R}(I-P)$.

Remark. Because I - P is a projection when P is a projection, we can apply part (ii) of Lemma 12.1.3 to I - P to get $\mathcal{N}(I - P) = \mathscr{R}(P)$.

We show next that a projection P on V decomposes V into the direct sum of two complementary subspaces of V.

Theorem 12.1.4. If $P \in \mathscr{L}(V)$ is a projection, then $V = \mathscr{R}(P) \oplus \mathscr{N}(P)$.

Proof. For every $x \in V$ there holds

$$P\mathbf{x} + (I - P)\mathbf{x} = P\mathbf{x} + I\mathbf{x} - P\mathbf{x} = \mathbf{x}.$$

By Lemma 12.1.3, part (ii), we have $\mathscr{R}(I-P) = \mathscr{N}(P)$, so that $(I-P)\mathbf{x} \in \mathscr{N}(P)$.

Thus each $\mathbf{x} \in V$ is the sum of $P\mathbf{x} \in \mathscr{R}(P)$ and $(I - P)\mathbf{x} \in \mathscr{N}(P)$.

This implies that $V = \mathscr{R}(P) + \mathscr{N}(P)$.

To show that $\mathscr{R}(P) \cap \mathscr{N}(P) = \{0\}$ we take $x \in \mathscr{R}(P) \cap \mathscr{N}(P)$.

Then $\mathbf{x} \in \mathscr{R}(P)$, so by Lemma 12.1.3 part (i) we have $P\mathbf{x} = \mathbf{x}$.

But as $\mathbf{x} \in \mathcal{N}(P)$, we have $P\mathbf{x} = 0$.

Thus
$$0 = P\mathbf{x} = \mathbf{x}$$
, giving $V = \mathscr{R}(P) \oplus \mathscr{N}(P)$.

Corollary 12.1.5. For dim $(V) < \infty$, if $P \in \mathscr{L}(V)$ is a projection with $S = [s_1, \ldots, s_k]$ a basis for $\mathscr{R}(P)$ and $T = [t_1, \ldots, t_l]$ a basis for $\mathscr{N}(P)$, then $S \cup T$ is a basis for V (i.e., $k + l = \dim(V)$) and the block matrix representation of P in the basis $S \cup T$ is

$$\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$$

where I is the $k \times k$ identity matrix, and each 0 is a zero matrix of appropriate size.

Proof. By Theorem 12.1.4 the union $S \cup T$ is a basis for V.

By Theorem 4.2.9, the block matrix representation of P in the basis $S \cup T$ is

$$\begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}$$

where $A_1 1$ is the $k \times k$ matrix representation of P on $\mathscr{R}(P)$, and A_{22} is the $l \times l$ matrix representation of P on $\mathscr{N}(P)$.

By Lemma 12.1.3 part (i), P is the identity map on $\mathscr{R}(P)$ so that $A_{11} = I$.

Since Px = 0 for each $x \in \mathcal{N}(P)$, we have $A_{22} = 0$.

Theorem 12.1.6. For subspaces W_1 and W_2 of V (not assumed finite dimensional), if $V = W_1 \oplus W_2$, then there exists a unique projection $P \in \mathscr{L}(V)$ such that $\mathscr{R}(P) = W_1$ and $\mathscr{N}(P) = W_2$.

Proof. From $V = W_1 \oplus W_2$, there is for each $x \in V$ unique $x_1 \in W_1$ and unique $x_2 \in W_2$ such that $x = x_1 + x_2$.

Define $P: V \to V$ by $P\mathbf{x} = \mathbf{x}_1$.

Since $x_1 = x_1 + 0$ for $x_1 \in W_1$, then $Px_1 = x_1$.

Hence $P^{2}x_{1} = P(Px_{1}) = Px_{1} = x_{1}$, so that $P^{2} = P$ on W_{1} .

Since $x_2 = 0 + x_2$ for $x_2 \in W_2$, then $Px_2 = 0$.

Hence $P^2 \mathbf{x}_2 = P(P\mathbf{x}_2) = P0 = 0$ (since $0 \in W_1$).

Thus $P^2 = P$ on $V = W_1 \oplus W_2$.

To show that P is linear, we let $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ and $\mathbf{y} = \mathbf{y}_1 + \mathbf{y}_2$, where $\mathbf{x}_1, \mathbf{y}_1 \in W_1$ and $\mathbf{x}_2, \mathbf{y}_2 \in W_2$.

Then for $a, b \in \mathbb{C}$ we have

$$ax + by = (ax_1 + by_1) + (ax_2 + by_2)$$

where $ax_1 + by_1 \in W_1$ and $ax_2 + by \in W_2$ because W_1 and W_2 are subspaces.

This gives

$$P(a\mathbf{x} + b\mathbf{y}) = P((a\mathbf{x}_1 + b\mathbf{y}) + (a\mathbf{x}_2 + b\mathbf{y}_2))$$
$$= a\mathbf{x}_1 + b\mathbf{y}_1$$
$$= aP(\mathbf{x}) + bP(\mathbf{y}).$$

Thus P is linear with $\mathscr{R}(P) = W_1$ and $\mathscr{N}(P) = W_2$.

If $Q \in \mathscr{L}(V)$ is another projection with $\mathscr{R}(Q) = W_1$ and $\mathscr{N}(Q) = W_2$, then for all $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 \in W_1 \oplus W_2$ there holds

$$Px = Px_1 + Px_2 = x_1 = Qx_1 = Qx_1 + Qx_2 = Qx.$$

This shows that P = Q on V, so that P is unique.

Definition. The unique projection $P \in \mathscr{L}(V)$ associated to $V = W_1 \oplus W_2$ in Theorem 12.1.6 is called the projection onto W_1 along W_2 .

For a projection $P \in \mathscr{L}(V)$, we have by Theorem 12.1.4 that $V = \mathscr{R}(P) \oplus \mathscr{N}(P)$, so that with $W_1 = \mathscr{R}(P)$ and $W_2 = \mathscr{N}(P)$, the projection P is the unique projection onto $\mathscr{R}(P)$ along $\mathscr{N}(P)$.

We sometimes says that a projection P is a projection onto $\mathscr{R}(P)$ without reference to along $\mathscr{N}(P)$ because the along part is always given by $\mathscr{N}(P)$.

Keep in mind that there do exist distinct projections $P, Q \in \mathscr{L}(V)$ with $\mathscr{R}(P) = \mathscr{R}(Q)$ but $\mathscr{N}(P) \neq \mathscr{N}(Q)$. For example, the projections $P, Q \in \mathscr{L}(\mathbb{C}^2)$ defined by $P(e_1) = e_1$, $P(e_2) = 0, Q(e_1) = e_1$, and $Q(e_1 + e_2) = 0$ has the same range but different kernels.

Remark. In a finite dimensional inner product space V, the projection P onto W_1 along W_2 is an orthogonal projection only when $W_2 = W_1^{\perp}$. In an infinite dimensional inner product space, a projection P onto W_1 along W_2 is an orthogonal projection only when W_1 is a closed subspace and $W_2 = W_1^{\perp}$.

Example (in lieu of 12.1.7). Consider the vector space $V = C([0, 1], \mathbb{C})$ equipped with the inner product

$$\langle f,g\rangle = \int_0^1 \overline{f(t)}g(t) \ dt.$$

Define the operator $P: V \to V$ by P(f) is the constant function from [0, 1] to \mathbb{C} with value f(0).

The operator P is linear because for $f, g \in V$ and $a, b \in \mathbb{C}$ there holds

$$P(af + bg) = af(0) + bg(0) = aP(f) + bP(g).$$

The operator $P \in \mathscr{L}(V)$ is a projection because for all $f \in V$ there holds

$$P^{2}(f) = P(f(0)) = f(0) = P(f).$$

The subspace $\mathscr{R}(P)$ consists of the constant functions from [0,1] to \mathbb{C} .

The subspace $\mathscr{N}(P)$ consists of those continuous functions $f : [0,1] \to \mathbb{C}$ such that f(0) = 0.

By Theorem 12.1.4 there holds $V = \mathscr{R}(P) \oplus \mathscr{N}(P)$, i.e., each function $f \in V$ can be written uniquely as

$$f(t) = f(0) + (f(t) - f(0))$$

for $f(0) \in \mathscr{R}(P)$ and $f(t) - f(0) \in \mathscr{N}(P)$.

With $W_1 = \mathscr{R}(P)$ and $W_2 = \mathscr{N}(P)$, we have by Theorem 12.1.6 that P is the unique projection onto W_1 along W_2 .

Is P an orthogonal projection? That is, is W_1 closed and is $W_1^{\perp} = W_2$?

The answer is no for the second condition because there exists $f \in W_1$ and $g \in W_2$ such that $\langle f, g \rangle \neq 0$, i.e., for f = 1 and g(t) = t we have

$$\langle f,g\rangle = \int_0^1 t \ dt = 1/2 \neq 0.$$

Note. Sometimes nonorthogonal projections, such as in the previous example, are called oblique projections.

12.1.2 Invariant Subspaces and Their Projections

Recall from Section 4.2 that a subspace W of V is invariant for $L \in \mathscr{L}(V)$ or that W is L-invariant if $L(W) \subset W$.

Theorem 12.1.8. For $L \in \mathscr{L}(V)$, a subspace W of V is L-invariant if and only if for any projection $P \in \mathscr{L}(V)$ onto W there holds

$$LP = PLP.$$

Proof. Suppose W is L-invariant.

Let $P \in \mathscr{L}(L)$ be a projection with $\mathscr{R}(P) = W$.

By the Remark after Lemma 12.1.3 the projection I-P satisfies $\mathcal{N}(I-P) = \mathscr{R}(P) = W$.

For each $w \in W$ the *L*-invariance of *W* implies that $Lw \in W$, and hence for all $w \in W$ that (I - P)Lw = 0.

Since $Pv \in W$ for all $v \in V$, we obtain (I - P)LPv = 0 for all $v \in V$.

This implies that (I - P)LP = 0 or rewritten that LP = PLP.

Now suppose for a projection P onto W that LP = PLP.

Since Pw = w for all $w \in W$ and LP = PLP, it follows that

$$Lw = LPw = PLPw = PLw$$

Since $PLw \in W$, we obtain $Lw = PLw \in W$, whence W is L-invariant.

Theorem 12.1.9. Suppose W_1, W_2 are subspaces of V for which $V = W_1 \oplus W_2$, and $L \in \mathscr{L}(V)$. Then W_1 and W_2 are both L-invariant if and only if the projection P onto W_1 along W_2 satisfies LP = PL.

Proof. Suppose both W_1 and W_2 are *L*-invariant.

Since $V = W_1 \oplus W_2$, each $v \in V$ can be written uniquely as $v = w_1 + w_2$ for $w_1 \in W_1$ and $w_2 \in W_2$.

We have $Pw_1 = w_1$ and $Pw_2 = 0$, and so $LPw_2 = 0$.

By the *L*-invariance of W_1 and W_2 we have $Lw_1 \in W_1$ and $Lw_2 \in W_2$.

Since P is the projection onto W_1 along W_2 there holds $PLw_1 = Lw_1$ and $PLw_2 = 0$. Thus

$$PL\mathbf{v} = PL\mathbf{w}_1 + PL\mathbf{w}_2 = PL\mathbf{w}_1 = L\mathbf{w}_1 = LP\mathbf{w}_1 = LP\mathbf{w}_1 + LP\mathbf{w}_2 = LP\mathbf{v}.$$

This holds for all $v \in V$ so that LP = PL.

Now suppose that LP = PL for the projection P onto W_1 along W_2 .

Then $\mathscr{R}(P) = W_1$ and $\mathscr{N}(P) = W_2$.

For $w_1 \in W_1$ we have

$$L\mathbf{w}_1 = LP\mathbf{w}_1 = PL\mathbf{w}_1 \in W_1$$

This shows that W_1 is *L*-invariant.

Because LP = PL there holds

$$L(I - P) = L - LP = L - PL = (I - P)L.$$

By Lemma 12.1.3 part (ii), we have $\mathscr{R}(I - P) = \mathscr{N}(P) = W_2$. For $w_2 \in W_2$ we have $Pw_2 = 0$ so that

$$Lw_2 = L(I - P)w_2 = (I - P)Lw_2 \in W_2.$$

This shows that W_2 is *L*-invariant.

12.1.3 Eigenprojections for Simple Operators

We apply the theory of projections to a simple operator on a finite dimensional vector space, where the range of the projections are the eigenspaces of that simple operator. This will give a decomposition of a simple operator on a finite dimensional vector space into a sum of scalar multiplies of the projections, where the scalars are the corresponding eigenvalues.

Recall for i, j = 1, ..., n that δ_{ij} is the $(i, j)^{\text{th}}$ entry of the $n \times n$ identity matrix I.

Proposition 12.1.10. Suppose $A \in M_n(\mathbb{C})$ is a simple operator whose distinct (complex) eigenvalues are $\lambda_1, \ldots, \lambda_n$. Let $S \in M_n(\mathbb{C})$ be the matrix whose columns are the corresponding right eigenvectors of A, and denote the i^{th} column of S by \mathbf{r}_i . Let $\ell_1^{\mathrm{T}}, \ldots, \ell_n^{\mathrm{T}}$ be the corresponding left eigenvectors of A, i.e., the rows of S^{-1} . Define the $n \times n$ matrices $P_k = \mathbf{r}_k \ell_k^{\mathrm{T}}, k = 1, \ldots, n$. Then

(i)
$$\ell_i^{\mathrm{T}}\mathbf{r}_j = \delta_{ij}$$
 for all $i, j = 1, \dots, n$,

(ii) $P_i P_j = \delta_{ij} P_i$ for all $i, j = 1, \dots, n$,

(iii) $P_i A = A P_i = \lambda_i P_i$ for all i = 1, ..., n, (iv) $\sum_{i=1}^n P_i = I$, and (v) $A = \sum_{i=1}^n \lambda_i P_i$.

Proof. (i) Since r_1, \ldots, r_n are columns of S, since $\ell_1^T, \ldots, \ell_n^T$ are the rows of S^{-1} , and since $S^{-1}S = I$ we have $\ell_i^T r_j = \delta_{ij}$.

(ii) Computing we have

$$P_i P_j = \mathbf{r}_i \ell_i^{\mathrm{T}} \mathbf{r}_j \ell_j^{\mathrm{T}} = \mathbf{r}_i \delta_{ij} \ell_j^{\mathrm{T}} = \delta_{ij} \mathbf{r}_i \ell_j^{\mathrm{T}} = \begin{cases} \mathbf{r}_i \ell_i^{\mathrm{T}} & \text{if } j = i, \\ 0 & \text{if } i \neq j. \end{cases}$$

Since $\mathbf{r}_i \ell_i^{\mathrm{T}} = P_i$, we obtain $P_i P_j = \delta_{ij} P_i$.

(iii) Computing we have

$$P_i A = \mathbf{r}_i \ell_i^{\mathrm{T}} A = \mathbf{r}_i \lambda_i \ell_i^{\mathrm{T}} = \lambda_i \mathbf{r}_i \ell_i^{\mathrm{T}} = \lambda_i P_i$$

and

$$AP_i = Ar_i \ell_i^{\mathrm{T}} = \lambda_i r_i \ell_i^{\mathrm{T}} = \lambda_i P_i$$

thus giving $P_i A = A P_i = \lambda_i P_i$.

(iv) We notice that

$$\sum_{i=1}^{n} P_i = \sum_{i=1}^{n} \mathbf{r}_i \ell_i^{\mathrm{T}}$$

is the outer product expansion of SS^{-1} obtained by partitioning S into columns and S^{-1} into rows.

Since $SS^{-1} = I$, we obtain $\sum_{i=1}^{\infty} P_i = I$.

(v) Using (iii) and (iv) we compute

$$\sum_{i=1}^{n} \lambda_i P_i = \sum_{i=1}^{n} A P_i = A \sum_{i=1}^{n} P_i = AI = A$$

giving the result.

Remark. The matrices P_i are projections by part (ii) of Proposition 12.1.10 because $P_i^2 = P_i P_i = \delta_{ii} P_i = P_i$. The rank of each of these projections is one because the columns of P_i are all scalar multiples of the nonzero right eigenvector \mathbf{r}_i . Indeed the range of P is the one-dimensional eigenspace of A corresponding to the eigenvalue λ_i .

Definition. For a simple operator $A \in M_n(\mathbb{C})$ the rank-1 projections P_1, \ldots, P_n in Proposition 12.1.10 are called the eigenprojections of A.

Example (in lieu of 12.1.11). The eigenvalues and right eigenvectors of the simple

$$A = \begin{bmatrix} 1 & 1\\ 4 & 1 \end{bmatrix} \in M_2(\mathbb{C})$$

are

$$\lambda_1 = 3, \ \mathbf{r}_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix}, \ \lambda_2 = -1, \ \mathbf{r}_2 = \begin{bmatrix} 1\\ -2 \end{bmatrix}.$$

The matrix of right eigenvectors

$$S = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$$

has inverse

$$S^{-1} = -\frac{1}{4} \begin{bmatrix} -2 & -1 \\ -2 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}$$

The rows of S^{-1} give left eigenvectors of A:

$$\ell_1^{\mathrm{T}} = \frac{1}{4} \begin{bmatrix} 2 & 1 \end{bmatrix}, \ \ell_2^{\mathrm{T}} = \frac{1}{4} \begin{bmatrix} 2 & -1 \end{bmatrix}.$$

The eigenprojections are

$$P_1 = r_1 \ell_1^T = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$$

and

$$P_2 = r_2 \ell_2^{\mathrm{T}} = \frac{1}{4} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \begin{bmatrix} 2 & -1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix}$$

Each of P_1 and P_2 has rank 1, and we can verify the properties listed in Proposition 12.1.10.

For property (ii) we have

$$P_{1}P_{2} = \frac{1}{16} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0,$$

$$P_{1}^{2} = \frac{1}{16} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 8 & 4 \\ 16 & 8 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = P_{1},$$

$$P_{2}^{2} = \frac{1}{16} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 8 & -4 \\ -16 & 8 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = P_{2}.$$

For property (iii) we have

$$\begin{aligned} AP_1 &= \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6 & 3 \\ 12 & 6 \end{bmatrix}, \\ P_1A &= \frac{1}{4} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6 & 3 \\ 12 & 6 \end{bmatrix} = \frac{3}{4} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = \lambda_1 P_1 \\ AP_2 &= \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix}, \\ P_2A &= \frac{1}{4} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} = -\frac{1}{4} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \lambda_2 P_2. \end{aligned}$$

For property (iv) we have

$$P_1 + P_2 = \frac{1}{4} \left\{ \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \right\} = \frac{1}{4} \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = I.$$

Finally for property (v) we have

$$\lambda_1 P_1 + \lambda_2 P_2 = \frac{3}{4} \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} = A.$$