Math 346 Lecture \#31

12.1 Projections

Before, in Chapter 3, we used an inner product on a vector space V to define an orthogonal projection P of V onto a subspace X of V. An algebraic property of an orthogonal projection P is that $P^{2}=P$ (called idempotence). This property is actually sufficient to define a projection on a vector space not necessarily equipped with an inner product.
Throughout this note, we assume that V is a vector space over \mathbb{F}.

12.1.1 Projections

Definition 12.1.1. A linear operator $P \in \mathscr{L}(V)$ is called a projection if $P^{2}=P$.
Example 12.1.2. If $P \in \mathscr{L}(V)$ is a projection, then so is $I-P \in \mathscr{L}(V)$, where $I \in \mathscr{L}(V)$ is the identity operator defined by $I(v)=v$ for all $v \in V$.
You have it as HW (Exercise 12.1) to show that $I-P$ is a projection.
The linear operator $I-P$ is called the complementary projection of P.
Lemma 12.1.3. If $P \in \mathscr{L}(V)$ is a projection, then
(i) $\mathrm{y} \in \mathscr{R}(P)$ if and only if $P \mathrm{y}=\mathrm{y}$, and
(ii) $\mathscr{N}(P)=\mathscr{R}(I-P)$.

Proof. (i) If $P \mathrm{y}=\mathrm{y}$, then $y \in \mathscr{R}(P)$.
On the other hand, if $y \in \mathscr{R}(P)$, then there exists $\mathrm{x} \in V$ such that $\mathrm{y}=P \mathrm{x}$.
Since $P^{2}=P$ we have $P \mathrm{y}=P^{2} \mathrm{x}=P \mathrm{x}=\mathrm{y}$.
(ii) We have $\mathrm{x} \in \mathscr{N}(P)$ if and only if $P \mathrm{x}=0$.

We also have $P \mathrm{x}=0$ if and only if $(I-P) \mathrm{x}=\mathrm{x}-P \mathrm{x}=\mathrm{x}$.
Because $I-P$ is a projection by Example 12.1.2, we have by part (i) that $(I-P) \mathrm{x}=\mathrm{x}$ if and only if $\mathrm{x} \in \mathscr{R}(I-P)$.
Thus we have that $\mathrm{x} \in \mathscr{N}(P)$ if and only if $\mathrm{x} \in \mathscr{R}(I-P)$.
Remark. Because $I-P$ is a projection when P is a projection, we can apply part (ii) of Lemma 12.1.3 to $I-P$ to get $\mathscr{N}(I-P)=\mathscr{R}(P)$.
We show next that a projection P on V decomposes V into the direct sum of two complementary subspaces of V.
Theorem 12.1.4. If $P \in \mathscr{L}(V)$ is a projection, then $V=\mathscr{R}(P) \oplus \mathscr{N}(P)$.
Proof. For every $\mathrm{x} \in V$ there holds

$$
P \mathrm{x}+(I-P) \mathrm{x}=P \mathrm{x}+I \mathrm{x}-P \mathrm{x}=\mathrm{x}
$$

By Lemma 12.1.3, part (ii), we have $\mathscr{R}(I-P)=\mathscr{N}(P)$, so that $(I-P) \mathrm{x} \in \mathscr{N}(P)$.
Thus each $\mathrm{x} \in V$ is the sum of $P \mathrm{x} \in \mathscr{R}(P)$ and $(I-P) \mathrm{x} \in \mathscr{N}(P)$.
This implies that $V=\mathscr{R}(P)+\mathscr{N}(P)$.
To show that $\mathscr{R}(P) \cap \mathscr{N}(P)=\{0\}$ we take $x \in \mathscr{R}(P) \cap \mathscr{N}(P)$.

Then $\mathrm{x} \in \mathscr{R}(P)$, so by Lemma 12.1.3 part (i) we have $P \mathrm{x}=\mathrm{x}$.
But as $\mathrm{x} \in \mathscr{N}(P)$, we have $P \mathrm{x}=0$.
Thus $0=P \mathrm{x}=\mathrm{x}$, giving $V=\mathscr{R}(P) \oplus \mathscr{N}(P)$.
Corollary 12.1.5. For $\operatorname{dim}(V)<\infty$, if $P \in \mathscr{L}(V)$ is a projection with $S=\left[\mathrm{s}_{1}, \ldots, \mathrm{~s}_{k}\right]$ a basis for $\mathscr{R}(P)$ and $T=\left[\mathrm{t}_{1}, \ldots, \mathrm{t}_{l}\right]$ a basis for $\mathscr{N}(P)$, then $S \cup T$ is a basis for V (i.e., $k+l=\operatorname{dim}(V))$ and the block matrix representation of P in the basis $S \cup T$ is

$$
\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]
$$

where I is the $k \times k$ identity matrix, and each 0 is a zero matrix of appropriate size.
Proof. By Theorem 12.1.4 the union $S \cup T$ is a basis for V.
By Theorem 4.2.9, the block matrix representation of P in the basis $S \cup T$ is

$$
\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]
$$

where $A_{1} 1$ is the $k \times k$ matrix representation of P on $\mathscr{R}(P)$, and A_{22} is the $l \times l$ matrix representation of P on $\mathscr{N}(P)$.
By Lemma 12.1.3 part (i), P is the identity map on $\mathscr{R}(P)$ so that $A_{11}=I$.
Since $P \mathrm{x}=0$ for each $\mathrm{x} \in \mathscr{N}(P)$, we have $A_{22}=0$.
Theorem 12.1.6. For subspaces W_{1} and W_{2} of V (not assumed finite dimensional), if $V=W_{1} \oplus W_{2}$, then there exists a unique projection $P \in \mathscr{L}(V)$ such that $\mathscr{R}(P)=W_{1}$ and $\mathscr{N}(P)=W_{2}$.

Proof. From $V=W_{1} \oplus W_{2}$, there is for each $\mathrm{x} \in V$ unique $\mathrm{x}_{1} \in W_{1}$ and unique $\mathrm{x}_{2} \in W_{2}$ such that $\mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2}$.
Define $P: V \rightarrow V$ by $P \mathrm{x}=\mathrm{x}_{1}$.
Since $\mathrm{x}_{1}=\mathrm{x}_{1}+0$ for $\mathrm{x}_{1} \in W_{1}$, then $P \mathrm{x}_{1}=\mathrm{x}_{1}$.
Hence $P^{2} \mathrm{x}_{1}=P\left(P \mathrm{x}_{1}\right)=P \mathrm{x}_{1}=\mathrm{x}_{1}$, so that $P^{2}=P$ on W_{1}.
Since $\mathrm{x}_{2}=0+\mathrm{x}_{2}$ for $\mathrm{x}_{2} \in W_{2}$, then $P \mathrm{x}_{2}=0$.
Hence $P^{2} \mathrm{x}_{2}=P\left(P \mathrm{x}_{2}\right)=P 0=0$ (since $\left.0 \in W_{1}\right)$.
Thus $P^{2}=P$ on $V=W_{1} \oplus W_{2}$.
To show that P is linear, we let $\mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2}$ and $\mathrm{y}=\mathrm{y}_{1}+\mathrm{y}_{2}$, where $\mathrm{x}_{1}, \mathrm{y}_{1} \in W_{1}$ and $\mathrm{x}_{2}, \mathrm{y}_{2} \in W_{2}$.
Then for $a, b \in \mathbb{C}$ we have

$$
a \mathrm{x}+b \mathrm{y}=\left(a \mathrm{x}_{1}+b \mathrm{y}_{1}\right)+\left(a \mathrm{x}_{2}+b \mathrm{y}_{2}\right)
$$

where $a \mathrm{x}_{1}+b \mathrm{y}_{1} \in W_{1}$ and $a \mathrm{x}_{2}+b \mathrm{y} \in W_{2}$ because W_{1} and W_{2} are subspaces.

This gives

$$
\begin{aligned}
P(a \mathrm{x}+b \mathrm{y}) & =P\left(\left(a \mathrm{x}_{1}+b \mathrm{y}\right)+\left(a \mathrm{x}_{2}+b \mathrm{y}_{2}\right)\right) \\
& =a \mathrm{x}_{1}+b \mathrm{y}_{1} \\
& =a P(\mathrm{x})+b P(\mathrm{y}) .
\end{aligned}
$$

Thus P is linear with $\mathscr{R}(P)=W_{1}$ and $\mathscr{N}(P)=W_{2}$.
If $Q \in \mathscr{L}(V)$ is another projection with $\mathscr{R}(Q)=W_{1}$ and $\mathscr{N}(Q)=W_{2}$, then for all $\mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2} \in W_{1} \oplus W_{2}$ there holds

$$
\mathrm{Px}=P \mathrm{x}_{1}+P \mathrm{x}_{2}=\mathrm{x}_{1}=Q \mathrm{x}_{1}=Q \mathrm{x}_{1}+Q \mathrm{x}_{2}=Q \mathrm{x}
$$

This shows that $P=Q$ on V, so that P is unique.
Definition. The unique projection $P \in \mathscr{L}(V)$ associated to $V=W_{1} \oplus W_{2}$ in Theorem 12.1.6 is called the projection onto W_{1} along W_{2}.

For a projection $P \in \mathscr{L}(V)$, we have by Theorem 12.1.4 that $V=\mathscr{R}(P) \oplus \mathscr{N}(P)$, so that with $W_{1}=\mathscr{R}(P)$ and $W_{2}=\mathscr{N}(P)$, the projection P is the unique projection onto $\mathscr{R}(P)$ along $\mathscr{N}(P)$.
We sometimes says that a projection P is a projection onto $\mathscr{R}(P)$ without reference to along $\mathscr{N}(P)$ because the along part is always given by $\mathscr{N}(P)$.
Keep in mind that there do exist distinct projections $P, Q \in \mathscr{L}(V)$ with $\mathscr{R}(P)=\mathscr{R}(Q)$ but $\mathscr{N}(P) \neq \mathscr{N}(Q)$. For example, the projections $P, Q \in \mathscr{L}\left(\mathbb{C}^{2}\right)$ defined by $P\left(e_{1}\right)=e_{1}$, $P\left(e_{2}\right)=0, Q\left(e_{1}\right)=e_{1}$, and $Q\left(e_{1}+e_{2}\right)=0$ has the same range but different kernels.
Remark. In a finite dimensional inner product space V, the projection P onto W_{1} along W_{2} is an orthogonal projection only when $W_{2}=W_{1}^{\perp}$. In an infinite dimensional inner product space, a projection P onto W_{1} along W_{2} is an orthogonal projection only when W_{1} is a closed subspace and $W_{2}=W_{1}^{\perp}$.
Example (in lieu of 12.1.7). Consider the vector space $V=C([0,1], \mathbb{C})$ equipped with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} \overline{f(t)} g(t) d t
$$

Define the operator $P: V \rightarrow V$ by $P(f)$ is the constant function from $[0,1]$ to \mathbb{C} with value $f(0)$.
The operator P is linear because for $f, g \in V$ and $a, b \in \mathbb{C}$ there holds

$$
P(a f+b g)=a f(0)+b g(0)=a P(f)+b P(g)
$$

The operator $P \in \mathscr{L}(V)$ is a projection because for all $f \in V$ there holds

$$
P^{2}(f)=P(f(0))=f(0)=P(f)
$$

The subspace $\mathscr{R}(P)$ consists of the constant functions from $[0,1]$ to \mathbb{C}.

The subspace $\mathscr{N}(P)$ consists of those continuous functions $f:[0,1] \rightarrow \mathbb{C}$ such that $f(0)=0$.
By Theorem 12.1.4 there holds $V=\mathscr{R}(P) \oplus \mathscr{N}(P)$, i.e., each function $f \in V$ can be written uniquely as

$$
f(t)=f(0)+(f(t)-f(0))
$$

for $f(0) \in \mathscr{R}(P)$ and $f(t)-f(0) \in \mathscr{N}(P)$.
With $W_{1}=\mathscr{R}(P)$ and $W_{2}=\mathscr{N}(P)$, we have by Theorem 12.1.6 that P is the unique projection onto W_{1} along W_{2}.
Is P an orthogonal projection? That is, is W_{1} closed and is $W_{1}^{\perp}=W_{2}$?
The answer is no for the second condition because there exists $f \in W_{1}$ and $g \in W_{2}$ such that $\langle f, g\rangle \neq 0$, i.e., for $f=1$ and $g(t)=t$ we have

$$
\langle f, g\rangle=\int_{0}^{1} t d t=1 / 2 \neq 0
$$

Note. Sometimes nonorthogonal projections, such as in the previous example, are called oblique projections.

12.1.2 Invariant Subspaces and Their Projections

Recall from Section 4.2 that a subspace W of V is invariant for $L \in \mathscr{L}(V)$ or that W is L-invariant if $L(W) \subset W$.
Theorem 12.1.8. For $L \in \mathscr{L}(V)$, a subspace W of V is L-invariant if and only if for any projection $P \in \mathscr{L}(V)$ onto W there holds

$$
L P=P L P
$$

Proof. Suppose W is L-invariant.
Let $P \in \mathscr{L}(L)$ be a projection with $\mathscr{R}(P)=W$.
By the Remark after Lemma 12.1.3 the projection $I-P$ satisfies $\mathscr{N}(I-P)=\mathscr{R}(P)=W$.
For each $\mathrm{w} \in W$ the L-invariance of W implies that $L \mathrm{w} \in W$, and hence for all $\mathrm{w} \in W$ that $(I-P) L w=0$.
Since $P \mathrm{v} \in W$ for all $\mathrm{v} \in V$, we obtain $(I-P) L P \mathrm{v}=0$ for all $\mathrm{v} \in V$.
This implies that $(I-P) L P=0$ or rewritten that $L P=P L P$.
Now suppose for a projection P onto W that $L P=P L P$.
Since $P \mathrm{w}=\mathrm{w}$ for all $\mathrm{w} \in W$ and $L P=P L P$, it follows that

$$
L \mathrm{w}=L P \mathrm{w}=P L P \mathrm{w}=P L \mathrm{w}
$$

Since $P L \mathrm{w} \in W$, we obtain $L \mathrm{w}=P L \mathrm{w} \in W$, whence W is L-invariant.
Theorem 12.1.9. Suppose W_{1}, W_{2} are subspaces of V for which $V=W_{1} \oplus W_{2}$, and $L \in \mathscr{L}(V)$. Then W_{1} and W_{2} are both L-invariant if and only if the projection P onto W_{1} along W_{2} satisfies $L P=P L$.

Proof. Suppose both W_{1} and W_{2} are L-invariant.
Since $V=W_{1} \oplus W_{2}$, each $\mathrm{v} \in V$ can be written uniquely as $\mathrm{v}=\mathrm{w}_{1}+\mathrm{w}_{2}$ for $\mathrm{w}_{1} \in W_{1}$ and $\mathrm{w}_{2} \in W_{2}$.
We have $P \mathrm{w}_{1}=\mathrm{w}_{1}$ and $P \mathrm{w}_{2}=0$, and so $L P \mathrm{w}_{2}=0$.
By the L-invariance of W_{1} and W_{2} we have $L \mathrm{w}_{1} \in W_{1}$ and $L \mathrm{w}_{2} \in W_{2}$.
Since P is the projection onto W_{1} along W_{2} there holds $P L \mathrm{w}_{1}=L \mathrm{w}_{1}$ and $P L \mathrm{w}_{2}=0$.
Thus

$$
P L \mathrm{v}=P L \mathrm{w}_{1}+P L \mathrm{w}_{2}=P L \mathrm{w}_{1}=L \mathrm{w}_{1}=L P \mathrm{w}_{1}=L P \mathrm{w}_{1}+L P \mathrm{w}_{2}=L P \mathrm{v}
$$

This holds for all $\mathrm{v} \in V$ so that $L P=P L$.
Now suppose that $L P=P L$ for the projection P onto W_{1} along W_{2}.
Then $\mathscr{R}(P)=W_{1}$ and $\mathscr{N}(P)=W_{2}$.
For $w_{1} \in W_{1}$ we have

$$
L \mathrm{w}_{1}=L P \mathrm{w}_{1}=P L \mathrm{w}_{1} \in W_{1} .
$$

This shows that W_{1} is L-invariant.
Because $L P=P L$ there holds

$$
L(I-P)=L-L P=L-P L=(I-P) L
$$

By Lemma 12.1.3 part (ii), we have $\mathscr{R}(I-P)=\mathscr{N}(P)=W_{2}$.
For $\mathrm{w}_{2} \in W_{2}$ we have $P \mathrm{w}_{2}=0$ so that

$$
L \mathrm{w}_{2}=L(I-P) \mathrm{w}_{2}=(I-P) L \mathrm{w}_{2} \in W_{2} .
$$

This shows that W_{2} is L-invariant.

12.1.3 Eigenprojections for Simple Operators

We apply the theory of projections to a simple operator on a finite dimensional vector space, where the range of the projections are the eigenspaces of that simple operator. This will give a decomposition of a simple operator on a finite dimensional vector space into a sum of scalar multiplies of the projections, where the scalars are the corresponding eigenvalues.
Recall for $i, j=1, \ldots, n$ that $\delta_{i j}$ is the $(i, j)^{\text {th }}$ entry of the $n \times n$ identity matrix I.
Proposition 12.1.10. Suppose $A \in M_{n}(\mathbb{C})$ is a simple operator whose distinct (complex) eigenvalues are $\lambda_{1}, \ldots, \lambda_{n}$. Let $S \in M_{n}(\mathbb{C})$ be the matrix whose columns are the corresponding right eigenvectors of A, and denote the $i^{\text {th }}$ column of S by r_{i}. Let $\ell_{1}^{\mathrm{T}}, \ldots, \ell_{n}^{\mathrm{T}}$ be the corresponding left eigenvectors of A, i.e., the rows of S^{-1}. Define the $n \times n$ matrices $P_{k}=\mathrm{r}_{k} \ell_{k}^{\mathrm{T}}, k=1, \ldots, n$. Then
(i) $\ell_{i}^{\mathrm{T}} \mathrm{r}_{j}=\delta_{i j}$ for all $i, j=1, \ldots, n$,
(ii) $P_{i} P_{j}=\delta_{i j} P_{i}$ for all $i, j=1, \ldots, n$,
(iii) $P_{i} A=A P_{i}=\lambda_{i} P_{i}$ for all $i=1, \ldots, n$,
(iv) $\sum_{i=1}^{n} P_{i}=I$, and
(v) $A=\sum_{i=1}^{n} \lambda_{i} P_{i}$.

Proof. (i) Since $\mathrm{r}_{1}, \ldots, \mathrm{r}_{n}$ are columns of S, since $\ell_{1}^{\mathrm{T}}, \ldots, \ell_{n}^{\mathrm{T}}$ are the rows of S^{-1}, and since $S^{-1} S=I$ we have $\ell_{i}^{T} \mathrm{r}_{j}=\delta_{i j}$.
(ii) Computing we have

$$
P_{i} P_{j}=\mathrm{r}_{i} \ell_{i}^{\mathrm{T}} \mathrm{r}_{j} \ell_{j}^{\mathrm{T}}=\mathrm{r}_{i} \delta_{i j} \ell_{j}^{\mathrm{T}}=\delta_{i j} \mathrm{r}_{i} \ell_{j}^{\mathrm{T}}= \begin{cases}\mathrm{r}_{i} \ell_{i}^{\mathrm{T}} & \text { if } j=i, \\ 0 & \text { if } i \neq j .\end{cases}
$$

Since $\mathrm{r}_{i} \ell_{i}^{\mathrm{T}}=P_{i}$, we obtain $P_{i} P_{j}=\delta_{i j} P_{i}$.
(iii) Computing we have

$$
P_{i} A=\mathrm{r}_{i} \ell_{i}^{\mathrm{T}} A=\mathrm{r}_{i} \lambda_{i} \ell_{i}^{\mathrm{T}}=\lambda_{i} \mathrm{r}_{i} \ell_{i}^{\mathrm{T}}=\lambda_{i} P_{i}
$$

and

$$
A P_{i}=A \mathrm{r}_{i} \ell_{i}^{\mathrm{T}}=\lambda_{i} \mathrm{r}_{i} \ell_{i}^{\mathrm{T}}=\lambda_{i} P_{i}
$$

thus giving $P_{i} A=A P_{i}=\lambda_{i} P_{i}$.
(iv) We notice that

$$
\sum_{i=1}^{n} P_{i}=\sum_{i=1}^{n} \mathrm{r}_{i} \ell_{i}^{\mathrm{T}}
$$

is the outer product expansion of $S S^{-1}$ obtained by partitioning S into columns and S^{-1} into rows.

Since $S S^{-1}=I$, we obtain $\sum_{i=1}^{\infty} P_{i}=I$.
(v) Using (iii) and (iv) we compute

$$
\sum_{i=1}^{n} \lambda_{i} P_{i}=\sum_{i=1}^{n} A P_{i}=A \sum_{i=1}^{n} P_{i}=A I=A
$$

giving the result.
Remark. The matrices P_{i} are projections by part (ii) of Proposition 12.1.10 because $P_{i}^{2}=P_{i} P_{i}=\delta_{i i} P_{i}=P_{i}$. The rank of each of these projections is one because the columns of P_{i} are all scalar multiples of the nonzero right eigenvector r_{i}. Indeed the range of P is the one-dimensional eigenspace of A corresponding to the eigenvalue λ_{i}.
Definition. For a simple operator $A \in M_{n}(\mathbb{C})$ the rank-1 projections P_{1}, \ldots, P_{n} in Proposition 12.1.10 are called the eigenprojections of A.
Example (in lieu of 12.1.11). The eigenvalues and right eigenvectors of the simple

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \in M_{2}(\mathbb{C})
$$

are

$$
\lambda_{1}=3, \mathrm{r}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \lambda_{2}=-1, \mathrm{r}_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

The matrix of right eigenvectors

$$
S=\left[\begin{array}{ll}
\mathrm{r}_{1} & \mathrm{r}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]
$$

has inverse

$$
S^{-1}=-\frac{1}{4}\left[\begin{array}{cc}
-2 & -1 \\
-2 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right] .
$$

The rows of S^{-1} give left eigenvectors of A :

$$
\ell_{1}^{\mathrm{T}}=\frac{1}{4}\left[\begin{array}{ll}
2 & 1
\end{array}\right], \ell_{2}^{\mathrm{T}}=\frac{1}{4}\left[\begin{array}{ll}
2 & -1
\end{array}\right] .
$$

The eigenprojections are

$$
P_{1}=\mathrm{r}_{1} \ell_{1}^{\mathrm{T}}=\frac{1}{4}\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{ll}
2 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]
$$

and

$$
P_{2}=\mathrm{r}_{2} \ell_{2}^{\mathrm{T}}=\frac{1}{4}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\left[\begin{array}{ll}
2 & -1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right] .
$$

Each of P_{1} and P_{2} has rank 1, and we can verify the properties listed in Proposition 12.1.10.

For property (ii) we have

$$
\begin{aligned}
P_{1} P_{2} & =\frac{1}{16}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0, \\
P_{1}^{2} & =\frac{1}{16}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]=\frac{1}{16}\left[\begin{array}{cc}
8 & 4 \\
16 & 8
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]=P_{1}, \\
P_{2}^{2} & =\frac{1}{16}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=\frac{1}{16}\left[\begin{array}{cc}
8 & -4 \\
-16 & 8
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=P_{2} .
\end{aligned}
$$

For property (iii) we have

$$
\begin{aligned}
& A P_{1}=\frac{1}{4}\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
6 & 3 \\
12 & 6
\end{array}\right], \\
& P_{1} A=\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
6 & 3 \\
12 & 6
\end{array}\right]=\frac{3}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]=\lambda_{1} P_{1} \\
& A P_{2}=\frac{1}{4}\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right], \\
& P_{2} A=\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right]=-\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=\lambda_{2} P_{2} .
\end{aligned}
$$

For property (iv) we have

$$
P_{1}+P_{2}=\frac{1}{4}\left\{\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]+\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]\right\}=\frac{1}{4}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=I
$$

Finally for property (v) we have

$$
\lambda_{1} P_{1}+\lambda_{2} P_{2}=\frac{3}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]-\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]=A
$$

