
Math 346 Lecture #32
12.2 Generalized Eigenvectors

We saw last time in Section 12.1 that a simple linear operator A ∈Mn(C) has the spectral
decomposition

A =
n∑
i=1

λiPi

where λ1, . . . , λn are the distinct eigenvalues of A and Pi is the eigenprojection onto the
eigenspace N (λiI − A). Something similar holds for semisimple A.

When A is not semisimple, there are not enough eigenvectors to form an eigenbasis. We
must look for generalized eigenspaces that contains the eigenspaces in order to find a
spectral decomposition of A.

Throughout we assume that V is a finite dimensional vector space over F, which we know
means that V is isomorphic to Fn for n = dim(V ). When we speak of a linear operator
A on V we will mean a linear operator on Fn, i.e., A ∈Mn(F).

12.2.1 The Index of an Operator

Recall from Exercise 2.8 that for a linear operator B on any vector space (this includes
infinite dimensional) we have the increasing sequence or ascending chain of subspaces

N (B) ⊂ N (B2) ⊂ · · · ⊂ N (Bk) ⊂ · · · .

When V is finite dimensional, the ascending chain stabilizes, i.e., there exists K ∈ N
such that for all k ≥ K there holds N (Bk) = N (Bk+1), because the the nondecreasing
sequence of dimensions (dim(N (Bl)))∞l=0 is bounded above by dim(V ) (proof of this
upper bound is HW Exercise 12.6), where we understand B0 = I.

Definition 12.2.1. The index of B ∈ Mn(F), denoted by ind(B), is the smallest
k ∈ {0, 1, 2, 3, . . . } such that N (Bk) = N (Bk+1).

Example 12.2.2. If B ∈ Mn(F) is invertible, i.e., det(B) 6= 0, then N (Bl) = {0} for
all l = 0, 1, 2, 3, . . . . Thus for invertible B we have ind(B) = 0. To get a positive index
requires that B is not invertible.

We show that the value k of the index of B is the integer K at which the ascending chain
stabilizes, that is it not possible for N (Bl) = N (Bl+1) for some l < ind(B).

Theorem 12.2.3. If ind(B) = k, then for all l ≥ k there holds N (Bl) = N (Bl+1),
and each of the inclusions N (Bl) ⊂ N (Bl+1) is proper for all l = 0, . . . , k − 1.

Proof. The finite dimensionality of Fn implies that only finite many of the inclusions in
the ascending chain

N (B) ⊂ N (B2) ⊂ · · · ⊂ N (Bk) ⊂ · · ·

can be proper.

You showed in Exercise 2.12, that if N (Bl) = N (Bl+1) for some l = 0, 1, 2, 3, . . . , then
N (Bj) = N (Bj+1) for all j ≥ l.



Thus with k = ind(B) being the smallest value for which N (Bk) = N (Bk+1), we obtain
for all l ≥ k that N (Bl) = N (Bl+1), and for all l = 0, . . . , k − 1 that the inclusions
N (Bl) ⊂ N (Bl+1) are proper. �

Example (in lieu of 12.2.4). For the matrix

B =


3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


we have

N (B) = span{e2} and R(B) = span{e1, e2, e3}.

Since

B2 =


3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0




3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =


9 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


we have

N (B2) = span{e2, e3} and R(B2) = span{e1, e2}.

Since

B3 =


9 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0




3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =


27 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


we have

N (B3) = span{e2, e3, e4} and R(B3) = {e1}.

Since for all l ≥ 3 we have

Bl =


3l 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
for l ≥ 3 we have

N (Bl) = span{e2, e3, e4} and R(Bl) = span{e1}.

This gives ind(B) = 3.

Notice also that N (Bj) and R(Bj) intersect nontrivially when j = 1, 2, but that these
subspaces intersect trivially when j ≥ 3. This is not a coincidence.

Theorem 12.2.5. For B ∈Mn(C), if k ≥ ind(B), then Cn = R(Bk)⊕N (Bk).

Proof. Suppose k ≥ ind(B) and let x ∈ R(Bk) ∩N (Bk).

Then there exists y ∈ Cn such that x = Bky, and Bkx = 0.

Hence 0 = Bkx = Bk(Bky) = B2ky.



This implies that y ∈ N (B2k).

Since k ≥ ind(B) we have N (B2k) = N (Bk), so that y ∈ N (Bk).

With x = Bk(y) and y ∈ N (Bk) we get x = 0.

Thus R(Bk) ∩N (Bk) = {0}.
This means that the subspace R(Bk)+N (Bk) of Cn is a direct sum (by Definition 1.3.6).

By the Rank-Nullity Theorem, we have dim(R(Bk)) + dim(N (Bk)) = n, whence we
have Cn = R(Bk)⊕N (Bk). �

Corollary 12.2.6. For B ∈ Mn(C), if k = ind(B), then for all m ≥ k there holds
R(Bm) = R(Bk).

Proof. For m ≥ k, we have R(Bm) ⊂ R(Bk) by Exercise 2.8.

It suffices to show dim(R(Bm)) = dim(R(Bk)) because this implies that R(Bm) =
R(Bk) by Exercise 1.21.

By Theorem 12.2.3 we have dim(N (Bm)) = dim(N (Bk)).

By the Rank-Nullity Theorem we have dim(R(Bm)) = dim(R(Bk)). �

We present an important observation in the finite dimensional case about the vectors
obtained by repeated powers of a linear operator acting on a given vector.

Proposition 12.2.7. For B ∈ Mn(C) and x ∈ Cn, if there exists m ∈ N such that
Bmx = 0 and Bm−1x 6= 0, then the set {x, Bx, . . . , Bm−1x} is linearly independent.

Proof. Suppose by way of contradiction that there exist constants a0, a1, . . . , am−1 ∈ F,
not all zero, such that

a0x + a1Bx + · · ·+ am−1B
m−1x = 0.

Let i ∈ {0, 1, . . . ,m− 1} be the smallest for which ai 6= 0.

Then the equation becomes

aiB
ix + ai+1B

i+1x + · · ·+ am−1B
m−1x = 0.

Multiplying the this equation through by Bm−i−1 gives

aiB
m−1x + ai+1B

mx + · · ·+ am−1B
2m−i−2x = 0.

Since Bmx = 0, then Bm+jx = 0 for all j ≥ 1, and the equation reduces to aiB
m−1x = 0.

Since ai 6= 0, this contradicts Bm−1x 6= 0. �

12.2.2 Generalized Eigenspaces

Recall that the eigenspace of a linear operator A ∈ Mn(C) associated to one of its
eigenvalues λ is the subspace

Σλ = N (λI − A),

where the dimension of this subspace is the geometric multiplicity of λ.



If A ∈ Mn(C) is semisimple (which includes the simple case) with spectrum σ(A) =
{λ1, . . . , λr} (the distinct eigenvalues of A), then there holds

Cn = N (λ1I − A)⊕N (λ2I − A)⊕ · · · ⊕N (λrI − A),

where the geometric multiplicity of each eigenspace equals the algebraic multiplicity of
the corresponding eigenvalue. Using the union of the bases for the eigenspaces of a
semisimple operator A results in a diagonal matrix where the diagonal entries are the
eigenvalues of A appearing according to their multiplicity.

When A is not diagonalizable, we do not have an eigenbasis for Cn. But for each eigen-
value λ ∈ σ(A) the ascending chain

N (λI − A) ⊂ N ((λI − A)2) ⊂ · · · ⊂ N ((λI − A)l) ⊂ · · ·

for the noninvertible linear operator λI−A stabilizes when l = ind(λI−A). We will show
that the subspaces N ((λI −A)ind(λI−A)), λ ∈ σ(A), do give a direct sum decomposition
of Fn and the linear operator in the corresponding basis is a block diagonal matrix.

Definition 12.2.8. For A ∈Mn(C) and λ ∈ σ(A), the subspace

Eλ = N ((λI − A)ind(λI−A))

is called the generalized eigenspace of A corresponding to λ. Every nonzero vector in Eλ
is called a generalized eigenvector of A corresponding to λ.

Through the next four lemmas we develop the theory needed to prove that the generalized
eigenspaces of a linear operator on a finite dimensional vector space do indeed give a direct
sum decomposition of the the vector space.

Lemma 12.2.9. For A ∈ Mn(C) and λ ∈ σ(A), the generalized eigenspace Eλ is
A-invariant.

Proof. Any subspace W is invariant under the linear operator λI, i.e., if x ∈ W , then
λIx = λx ∈ W .

We can write A = λI − (λI − A).

We show that the subspace Eλ is invariant under A if and only if it is invariant under
(λI − A).

Suppose that Eλ is invariant under A, i.e., A(Eλ) ⊂ Eλ.

Since Eλ is invariant under λI, it follows that for each x ∈ Eλ that λIx ∈ Eλ.

Since Ax ∈ Eλ, we have that

(λI − A)x = λx− Ax ∈ Eλ.

This says that Eλ is invariant under λI − A.

Now suppose that Eλ is invariant under λI − A.

Since Eλ is invariant under λI, it follows for each x ∈ Eλ that λIx ∈ Eλ.



Since (λI − A)x ∈ Eλ, we have that

Ax = (λI + λI − A)x = λIx + (λI − A)x ∈ Eλ.

We now show that Eλ is invariant under λI − A.

For x ∈ Eλ, y = (λI − A)x, and k = ind(λI − A), we have

(λI − A)ky = (λI − A)k+1x = 0.

Thus y ∈ Eλ, and hence that Eλ is invariant under λI − A. �

Example (in lieu of 12.2.10). The matrix

A =


2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5


has two distinct eigenvalues λ1 = 2 of algebraic multiplicity 3 and λ2 = 5 of algebraic
multiplicity 1.

Since

λ1I − A =


0 −1 0 0
0 0 −1 0
0 0 0 −3
0 0 0 −3

 ,
there is one eigenvector e1 of A corresponding to λ1 = 2.

Now as

(λ1I − A)2 =


0 −1 0 0
0 0 −1 0
0 0 0 −3
0 0 0 −3




0 −1 0 0
0 0 −1 0
0 0 0 −3
0 0 0 −3

 =


0 0 1 0
0 0 0 3
0 0 0 9
0 0 0 9


and

(λ1I − A)3 =


0 0 1 0
0 0 0 3
0 0 0 9
0 0 0 9




0 −1 0 0
0 0 −1 0
0 0 0 −3
0 0 0 1

 =


0 0 0 −3
0 0 0 −9
0 0 0 −27
0 0 0 −27

 ,
the generalized eigenspace Eλ1 has a basis of {e1, e2, e3}.
Since

λ2I − A =


3 −1 0 0
0 3 −1 0
0 0 3 −3
0 0 0 0

 ,
the (generalized) eigenspace Eλ2 has a basis of

[
1 3 9 9

]T
.

Notice that Eλ1 ∩ Eλ2 = {0}. This is not a coincidence.



Lemma 12.2.11. If λ and µ are distinct eigenvalues of A ∈Mn(C), then Eλ∩Eµ = {0}.
Proof. Suppose there is x ∈ Eµ ∩ Eλ such that x 6= 0.

Set k = ind(λI − A) and l = ind(µI − A).

Let j ∈ {1, . . . , l} be the unique value for which (µI − A)j−1x 6= 0 and (µI − A)jx = 0.

Set y = (µI − A)j−1x.

Then y 6= 0 because y = (µI − A)j−1x 6= 0, and y ∈ N (µI − A) because (µI − A)y =
(µI − A)jx = 0.

Since x ∈ Eµ, the invariance of Eµ under µI−A (as shown in the proof of Lemma 12.2.9)
implies that

y = (µI − A)j−1x ∈ Eµ.

On the other hand, with x ∈ Eλ we have (λI − A)kx = 0.

The operators (λI − A)k and (µI − A)j−1 commute because both are polynomials in A.

The vector y belongs to Eλ because

(λI − A)ky = (λI − A)k(µI − A)j−1x = (µI − A)j−1(λI − A)kx = 0.

Thus we have a nonzero vector y ∈ N (µI − A) ∩ Eλ.

From y ∈ N (µI − A) we obtain Ay = µy.

Applying the Binomial Theorem to (λI − A)ky = 0 and using Ay = µy gives

(λ− µ)ky = 0.

[You have it as HW (Exercise 12.9) to carry out the expansion of (λI − A)k using the
Binomial Theorem and then to replace Amy with µmy and simplify to get (λ−µ)ky = 0.]

Since λ 6= µ, the equation (λ− µ)ky = 0 implies that y = 0.

But this is a contradiction to y 6= 0, which gives x = 0. �

Lemma 12.2.12. For A ∈ Mn(C), suppose W1 and W2 are A-invariant subspaces
of Cn with W1 ∩ W2 = {0}. If, for λ ∈ σ(A), the generalized eigenspace Eλ satisfies
Eλ ∩Wi = {0} for all i = 1, 2, then

Eλ ∩ (W1 ⊕W2) = {0}.

Proof. Suppose x ∈ Eλ ∩ (W1 ⊕W2).

Then there are unique xi ∈ Wi, i = 1, 2, such that x = x1 + x2.

For k = ind(λI − A) we have

0 = (λI − A)lx = (λI − A)kx1 + (λI − A)kx2

where the first equality holds because x ∈ Eλ.

Thus (λI − A)kx1 = −(λI − A)kx2.



As shown in the proof of Lemma 12.2.9, the A-invariance of W1 and W2 implies the
(λI − A)-invariance of W1 and W2.

Thus xi ∈ Wi implies (λI − A)kxi ∈ Wi for both i = 1, 2.

Since (λI − A)kx1 = −(λI − A)kx2 we obtain that

(λI − A)kx1 = −(λI − A)kx2 ∈ W1 ∩W2 = {0}.

This implies that xi ∈ N ((λI − A)k) = Eλ for both i = 1, 2.

Thus we have xi ∈ Eλ ∩Wi = {0} for both i = 1, 2.

This gives xi = 0 for both i = 1, 2,, and hence that x = 0. �.

Lemma 12.2.13. For A ∈ Mn(C) and λ ∈ σ(A), the dimension of the generalized
eigenspace Eλ equals the algebraic multiplicity mλ of λ.

Proof. The argument follows that in the proof of Theorem 4.4.5.

By Schur’s Lemma we can assume that A is upper triangular, having the block form

A =

[
T11 T12
0 T22

]
.

Here T11 and T22 are upper triangular mλ × mλ and (n − mλ) × (n − mλ) matrices
respectively where the diagonal entries of T11 are all λ, and none of the diagonal entires
of T22 are λ.

The upper triangular matrix λI−T11 has zeros on its diagonals, while the upper triangular
matrix λI − T22 has nonzero entries for all of its diagonals.

Thus (λI − T11)mλ = 0 and (λI − T22)k is nonsingular for all k ∈ N.

Therefore the dimension of Eλ is the dimension of N ((λI−A)mλ) which is the dimension
of N ((λI − T11)mλ) which is mλ. �

Theorem 12.2.14. For each A ∈Mn(C) there is decomposition of Cn into a direct sum
of A-invariant subspaces

Cn =
⊕
λ∈σ(A)

Eλ.

Proof. First, we show, for a fixed but arbitrary λ ∈ σ(A), and any nonempty subset
M ⊂ σ(A) \ {λ}, that

Eλ ∩
⊕
µ∈M

Eµ = {0}.

We use strong induction on the cardinality of M .

If |M | = 1, then M = {µ} and Eλ ∩ Eµ follows by Lemma 12.2.11.

Now for m ≥ 2 suppose that

Eλ ∩
⊕
µ∈M

Eµ = {0}

holds when 1 ≤ |M | ≤ m and M ⊂ σ(A) \ {λ}.



Let M ′ = M ∪ {ν} where |M | = m and ν ∈ σ(A) \M .

Then |M ′| = m+ 1.

Set W1 = Eν , and

W2 =
⊕
µ∈M

Eµ.

For the set M̃ = {λ, ν} we have by the strong induction hypothesis that Eλ ∩W1 = {0}.
Also by the strong induction hypothesis we have Eλ ∩W2 = {0}.
We get W1 ∩W2 = {0} by applying again the strong induction hypothesis to the set M
and the eigenvalue ν replacing λ.

The condition W1 ∩W2 = {0} implies that W1 +W2 = W1 ⊕W2, i.e.,

Eν +

(⊕
µ∈M

Eµ

)
= Eν ⊕

(⊕
µ∈M

Eµ

)
=
⊕
µ∈M ′

Eµ.

The spaces Eλ, W1, and W2 now satisfy the hypotheses of Lemma 12.2.12 which gives

{0} = Eλ ∩ (W1 ⊕W2) = Eλ ∩
⊕
µ∈M ′

Eµ.

By strong induction we obtain for a fixed by arbitrary λ ∈ σ(A) and for any nonempty
M ⊂ σ(A) \ {λ} that

Eλ ∩
⊕
µ∈M

Eµ = {0}.

By the definition of a direct sum (see Definition 1.3.6) we obtain a subspace

W =
∑

µ∈σ(A)

Eµ =
⊕
µ∈σ(A)

Eµ ⊂ Cn.

By Lemma 12.2.13, the dimension of each Eµ is the algebraic multiplicity mµ of µ, and
the sum of the algebraic multiplicities of A add to n.

Therefore W = Cn, and since each Eµ is A-invariant by Lemma 12.2.9, we obtain the
desired decomposition. �

Remark 12.2.15. Theorem 12.2.14 implies that every A ∈ Mn(C) is similar to a
block diagonal matrix where each block is the representation of A on the A-invariant Eλ.
There exists a basis for each block in which the block matrix is upper triangular with the
eigenvalue in each diagonal entry and either zeros or ones on the super diagonal. With
each block put into this form, we obtain what is known as the Jordan Canonical Form of
A. Although useful in theory, the Jordan Canonical Form is poorly conditioned, meaning
small errors in the floating-point arithmetic can compound into large errors in the final
result.


