Math 346 Lecture \#35

12.5 Spectral Decomposition I

The goal of this and the next section is to establish the existence of a spectral decomposition of any linear operator on \mathbb{C}^{n}. Such a spectral decomposition depends on the spectral projections which are the residues of the resolvent at the eigenvalues. But such a spectral decomposition also depends, as we saw in the last lecture, on other terms in the Laurent series of the resolvent about the eigenvalues. We begin to develop a better understanding of the Laurent series of the resolvent in this section.
For $A \in M_{n}(\mathbb{C})$ and $\lambda \in \sigma(A)$, there exist $A_{k} \in M_{n}(\mathbb{C}), k \in \mathbb{Z}$, (depending on λ) such that the resolvent of A as a Laurent series about λ has the form

$$
R_{A}(z)=\sum_{k=-\infty}^{\infty} A_{k}(z-\lambda)^{k}
$$

By the Laurent Expansion Theorem, we have for each $k \in \mathbb{Z}$ that

$$
A_{k}=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{R_{A}(z)}{(z-\lambda)^{k+1}} d z
$$

for a positively oriented simple closed contour Γ enclosing λ but no other element of $\sigma(A)$. The coefficient A_{-1} is the spectral projection P_{λ}. We are going to discover the nature of the relationships that exist among all the coefficient matrices A_{k} in Laurent series for $R_{A}(z)$ about λ.
Nota Bene 12.5.1. Be aware that A_{k} is a coefficient matrix in a Laurent series while A^{k} is the $k^{\text {th }}$ power of A.
Notation. For $n \in \mathbb{Z}$, define

$$
\eta_{n}= \begin{cases}1 & \text { if } n \geq 0 \\ 0 & \text { if } n<0\end{cases}
$$

This is a characteristic or indicator function on the set \mathbb{Z}.
Lemma 12.5.2. For $A \in M_{n}(\mathbb{C})$ and $\lambda \in \sigma(A)$, let Γ and Γ^{\prime} be two positively oriented simple closed contours in $\rho(A)$ enclosing λ and no other element of $\sigma(A)$. Assume further that Γ is in the interior of Γ^{\prime}, that $z^{\prime} \in \Gamma^{\prime}$, and $z \in \Gamma$. Then for all $m \in \mathbb{N}$ there holds

$$
\text { (i) } \frac{1}{2 \pi i} \oint_{\Gamma}(z-\lambda)^{-m-1}\left(z^{\prime}-z\right)^{-1} d z=\eta_{m}\left(z^{\prime}-\lambda\right)^{-m-1}
$$

and for all $n \in \mathbb{N}$ there holds

$$
\text { (ii) } \frac{1}{2 \pi i} \oint_{\Gamma^{\prime}}\left(z^{\prime}-\lambda\right)^{-n-1}\left(z^{\prime}-z\right)^{-1} d z^{\prime}=\left(1-\eta_{n}\right)(z-\lambda)^{-n-1} \text {. }
$$

Proof. (i) Since every point z^{\prime} on Γ^{\prime} is outside of Γ, the function $\left(z^{\prime}-z\right)^{-1}$ is holomorphic within Γ.

Using the geometric series, we expand $\left(z^{\prime}-z\right)^{-1}$ in terms of $z-\lambda$:

$$
\frac{1}{z^{\prime}-z}=\frac{1}{z^{\prime}-\lambda} \cdot \frac{1}{1-\left(\frac{z-\lambda}{z^{\prime}-\lambda}\right)}=\frac{1}{z^{\prime}-\lambda} \sum_{k=0}^{\infty}\left(\frac{z-\lambda}{z^{\prime}-\lambda}\right)^{k}=\sum_{k=0}^{\infty} \frac{(z-\lambda)^{k}}{\left(z^{\prime}-\lambda\right)^{k+1}}
$$

WLOG we may shrink Γ to a small circle Γ_{λ} centered at λ with every point on Γ_{λ} closer to λ than z^{\prime}.
For a fixed $m \in \mathbb{N}$ we then have

$$
\begin{aligned}
\frac{1}{2 \pi i} & \oint_{\Gamma_{\lambda}}(z-\lambda)^{-m-1}\left(z^{\prime}-z\right)^{-1} d z \\
& =\frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}(z-\lambda)^{-m-1}\left[\sum_{k=0}^{\infty} \frac{(z-\lambda)^{k}}{\left(z^{\prime}-\lambda\right)^{k+1}}\right] d z \\
& =\sum_{k=0}^{\infty}\left(z^{\prime}-\lambda\right)^{-k-1}\left[\frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}(z-\lambda)^{-m-1+k} d z\right] .
\end{aligned}
$$

By Lemma 11.3 .5 we have

$$
\frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}(z-\lambda)^{-m-1+k} d z= \begin{cases}1 & \text { if } k=m \\ 0 & \text { if } k \neq m\end{cases}
$$

When $m<0$, the case $k=m$ never occurs since $k \geq 0$, thus giving

$$
\frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}(z-\lambda)^{-m-1}\left(z^{\prime}-z\right)^{-1} d z=0
$$

When $m \geq 0$, only one of the integrals is nonzero, and that occurs when $k=m$, thus giving

$$
\frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}(z-\lambda)^{-m-1}\left(z^{\prime}-z\right)^{-1} d z=\left(z^{\prime}-\lambda\right)^{-m-1}
$$

These two outcomes for the integral combine through the function η_{m} to give

$$
\frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}(z-\lambda)^{-m-1}\left(z^{\prime}-z\right)^{-1} d z=\eta_{m}\left(z^{\prime}-\lambda\right)^{-m-1}
$$

(ii) In this case, both λ and z lies inside Γ^{\prime}.

Using the Cauchy-Goursat Theorem, the same circle Γ_{λ} from part (i), a small circle Γ_{z} centered at z such that Γ_{z} does not intersect Γ^{\prime}, and the appropriate cuts, we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{\Gamma^{\prime}}\left(z^{\prime}-\lambda\right)^{-n-1}\left(z^{\prime}-z\right)^{-1} d z^{\prime} \\
& =\frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}\left(z^{\prime}-\lambda\right)^{-n-1}\left(z^{\prime}-z\right)^{-1} d z^{\prime} \\
& \quad+\frac{1}{2 \pi i} \oint_{\Gamma_{z}}\left(z^{\prime}-\lambda\right)^{-n-1}\left(z^{\prime}-z\right)^{-1} d z^{\prime}
\end{aligned}
$$

For the former integral we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}\left(z^{\prime}-\lambda\right)^{-n-1}\left(z^{\prime}-z\right)^{-1} d z^{\prime} \\
& \quad=-\frac{1}{2 \pi i} \oint_{\Gamma_{\lambda}}\left(z^{\prime}-\lambda\right)^{-n-1}\left(z-z^{\prime}\right)^{-1} d z^{\prime}=-\eta_{n}(z-\lambda)^{-n-1}
\end{aligned}
$$

by an argument similar to that in part (i) with Γ replaced with Γ^{\prime} and z and z^{\prime} switched. For the latter integral we have by the Cauchy Integral formula that

$$
\frac{1}{2 \pi i} \oint_{\Gamma_{z}} \frac{\left(z^{\prime}-\lambda\right)^{-n-1}}{z^{\prime}-z} d z^{\prime}=(z-\lambda)^{-n-1}
$$

since $z^{\prime} \rightarrow\left(z^{\prime}-\lambda\right)^{-n-1}$ is holomorphic on a simply connected open set containing Γ_{z}. Combining the two integrals gives the result.
Lemma 12.5.3. The matrix coefficients A_{k} in the Laurent expansion

$$
R_{A}(z)=\sum_{k=-\infty}^{\infty} A_{k}(z-\lambda)^{k}
$$

about $\lambda \in \sigma(A)$ satisfy

$$
A_{m} A_{n}=\left(1-\eta_{m}-\eta_{n}\right) A_{m+n+1}
$$

Proof. Let Γ and Γ^{\prime} be two positively oriented simply closed contours enclosing $\lambda \in \sigma(A)$ but no other element of $\sigma(A)$, and further assume that Γ is in the interior of Γ^{\prime}.
For $m, n \in \mathbb{N}$ we write

$$
A_{m}=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{R_{A}(z)}{(z-\lambda)^{m+1}} d z, A_{n}=\frac{1}{2 \pi i} \oint_{\Gamma^{\prime}} \frac{R_{A}\left(z^{\prime}\right)}{\left(z^{\prime}-\lambda\right)^{n+1}} d z^{\prime}
$$

Using properties of the resolvent in Lemma 12.3.5, and Fubini's Theorem, we have

$$
\begin{aligned}
A_{m} A_{n}= & \left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma} \oint_{\Gamma^{\prime}}(z-\lambda)^{-m-1}\left(z^{\prime}-\lambda\right)^{-n-1} R_{A}\left(z^{\prime}\right) R_{A}(z) d z^{\prime} d z \\
= & \left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma} \oint_{\Gamma^{\prime}}(z-\lambda)^{-m-1}\left(z^{\prime}-\lambda\right)^{-n-1} \frac{R_{A}(z)-R_{A}\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime} d z \\
= & \left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma}(z-\lambda)^{-m-1} R(z)\left[\oint_{\Gamma^{\prime}}\left(z^{\prime}-\lambda\right)^{-n-1}\left(z^{\prime}-z\right)^{-1} d z^{\prime}\right] d z \\
& -\left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma^{\prime}}\left(z^{\prime}-\lambda\right)^{-n-1} R\left(z^{\prime}\right)\left[\oint_{\Gamma}(z-\lambda)^{-m-1}\left(z^{\prime}-z\right)^{-1} d z\right] d z^{\prime} \\
= & \frac{1}{2 \pi i} \oint_{\Gamma}(z-\lambda)^{-m-1} R(z)\left(1-\eta_{n}\right)(z-\lambda)^{-n-1} d z \\
& -\frac{1}{2 \pi i} \oint_{\Gamma^{\prime}}\left(z^{\prime}-\lambda\right)^{-n-1} R\left(z^{\prime}\right) \eta_{m}\left(z^{\prime}-\lambda\right)^{-m-1} d z^{\prime}
\end{aligned}
$$

The integrand of the second integral has an isolated singularity at λ, and so by the Cauchy-Goursat Theorem and the appropriate cut we can replace Γ^{\prime} with Γ and z^{\prime} with z without changing the the value of the second integral.
This gives for $A_{n} A_{m}$ the expression

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{\Gamma}\left[(z-\lambda)^{-m-1} R(z)\left(1-\eta_{n}\right)(z-\lambda)^{-n-1}-(z-\lambda)^{-n-1} R(z) \eta_{m}(z-\lambda)^{-m-1}\right] d z \\
& \quad=\frac{1}{2 \pi i} \oint_{\Gamma}(z-\lambda)^{-m-1}(z-\lambda)^{-n-1} R(z)\left[1-\eta_{n}-\eta_{m}\right] d z \\
& =\left[1-\eta_{m}-\eta_{n}\right] \frac{1}{2 \pi i} \oint_{\Gamma}(z-\lambda)^{-m-n-2} R(z) d z \\
& =\left[1-\eta_{m}-\eta_{n}\right] A_{m+n+1} .
\end{aligned}
$$

This gives the identity $A_{m} A_{n}=\left(1-\eta_{m}-\eta_{n}\right) A_{m+n+1}$.
Remark 12.5.4. Since $P_{\lambda}=A_{-1}$, Lemma 12.5.3 gives another proof that

$$
P_{\lambda}^{2}=A_{-1} A_{-1}=\left(1-\eta_{-1}-\eta_{-1}\right) A_{-1-1+1}=A_{-1}=P_{\lambda}
$$

Notation. To express the relationships that exists among the coefficient matrices A_{k} in the Laurent series of $R_{A}(z)$ about λ, we define

$$
D_{\lambda}=A_{-2} \text { and } S_{\lambda}=A_{0}
$$

Lemma 12.5.5. For $A \in M_{n}(\mathbb{C})$ and $\lambda \in \sigma(A)$, there holds
(i) $A_{-n}=D_{\lambda}^{n-1}$ for all $n \geq 2$,
(ii) $A_{n}=(-1)^{n} S_{\lambda}^{n+1}$ for all $n \geq 1$,
(iii) the spectral projection P_{λ} commutes with D_{λ} and with S_{λ}, where in particular,

$$
P_{\lambda} D_{\lambda}=D_{\lambda}, \quad P_{\lambda} S_{\lambda}=0
$$

(iv) The Laurent series of $R_{A}(z)$ about λ is

$$
R_{A}(z)=\frac{P_{\lambda}}{z-\lambda}+\sum_{k=1}^{\infty} \frac{D_{\lambda}^{k}}{(z-\lambda)^{k+1}}+\sum_{k=0}^{\infty}(-1)^{k}(z-\lambda)^{k} S_{\lambda}^{k+1}
$$

(v) the spectral projection P_{λ} commutes with $R_{A}(z)$, where in particular

$$
P_{\lambda} R_{A}(z)=\frac{P_{\lambda}}{z-\lambda}+\sum_{k=1}^{\infty} \frac{D_{\lambda}^{k}}{(z-\lambda)^{k+1}} .
$$

The proof of these is HW (Exercises 12.23, 12.24, and 12.25).
Remark. The Laurent series for $R_{A}(z)$ about $\lambda \in \sigma(A)$ is completely determined by three matrices $P_{\lambda}=A_{-1}, D_{\lambda}=A_{-2}$, and $S_{\lambda}=A_{0}$.

Example. We verify some parts of Lemma 12.5.5 for the linear operator

$$
A=\left[\begin{array}{lll}
6 & 1 & 0 \\
6 & 1 & 7 \\
0 & 0 & 4
\end{array}\right]
$$

and use other parts of Lemma 12.5.5 to compute Laurent series expansion of $R_{A}(z)$ about $\lambda=6$.

We computed previously that

$$
R_{A}(z)=\frac{1}{z-6}\left[\begin{array}{ccc}
1 & 0 & -7 / 4 \\
0 & 1 & 7 / 2 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{(z-6)^{2}}\left[\begin{array}{ccc}
0 & 1 & 7 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{z-4}\left[\begin{array}{ccc}
0 & 0 & 7 / 4 \\
0 & 0 & -7 / 2 \\
0 & 0 & 1
\end{array}\right]
$$

so that the spectral projections are

$$
P_{6}=\left[\begin{array}{ccc}
1 & 0 & -7 / 4 \\
0 & 1 & 7 / 2 \\
0 & 0 & 0
\end{array}\right] \text { and } P_{4}=\left[\begin{array}{ccc}
0 & 0 & 7 / 4 \\
0 & 0 & -7 / 2 \\
0 & 0 & 1
\end{array}\right]
$$

Also from the partial fraction decomposition of $R_{A}(z)$ we have

$$
D_{6}=\left[\begin{array}{ccc}
0 & 1 & 7 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { and } D_{4}=0
$$

We may thus neatly write

$$
R_{A}(z)=\frac{P_{6}}{z-6}+\frac{D_{6}}{(z-6)^{2}}+\frac{P_{4}}{z-4}
$$

Verifying part (iii) of Lemma 12.5.5, the matrices P_{6} and D_{6} satsify

$$
\begin{aligned}
P_{6} D_{6} & =\left[\begin{array}{ccc}
1 & 0 & -7 / 4 \\
0 & 1 & 7 / 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 7 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 1 & 7 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=D_{6} \\
& =\left[\begin{array}{ccc}
0 & 1 & 7 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -7 / 4 \\
0 & 1 & 7 / 2 \\
0 & 0 & 0
\end{array}\right]=D_{6} P_{6} .
\end{aligned}
$$

The matrix D_{6} satisfies

$$
D_{6}^{2}=\left[\begin{array}{ccc}
0 & 1 & 7 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 7 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=0
$$

Thus $D_{6}^{k}=0$ for all $k \geq 2$, so that

$$
\sum_{k=1}^{\infty} \frac{D_{6}^{k}}{(z-6)^{k+1}}=\frac{D_{6}}{(z-6)^{2}}
$$

We could compute S_{6} by writing $1 /(z-4)$ as a geometric series in $(z-6)$.
Instead we make use of parts (iv) and (v) of Lemma 12.5.5. First, by part (iv) we have

$$
\sum_{k=0}^{\infty}(-1)^{k}(z-6)^{k} S_{6}^{k+1}=R_{A}(z)-\left(\frac{P_{6}}{z-6}+\frac{D_{6}}{(z-6)^{2}}\right)
$$

By part (v) we have

$$
R_{A}(z) P_{6}=\frac{P_{6}}{z-6}+\frac{D_{6}}{(z-6)^{2}} .
$$

Combining these gives

$$
\sum_{k=0}^{\infty}(-1)^{k}(z-6)^{k} S_{6}^{k+1}=R_{A}(z)-R_{A}(z) P_{6}=R_{A}(z)\left(I-P_{6}\right)=R_{A}(z) P_{4}
$$

by the completeness $P_{6}+P_{4}=I$.
In the product $R_{A}(z) P_{4}$ we have $P_{6} P_{4}=0$ and $P_{4}^{2}=0$, but what is $D_{6} P_{4}$? It is

$$
\left[\begin{array}{ccc}
0 & 1 & 7 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 7 / 4 \\
0 & 0 & -7 / 2 \\
0 & 0 & 1
\end{array}\right]=0
$$

Is this just a coincidence? According to part (v) of Lemma 12.5.5 it is not!
We thus have

$$
R_{A}(z) P_{4}=\frac{P_{4}}{z-4}
$$

The point of all of this is that we have

$$
\sum_{k=0}^{\infty}(-1)^{k}(z-6)^{k} S_{6}^{k+1}=\frac{P_{4}}{z-4}
$$

Evaluating this equality at $z=6$ gives

$$
S_{6}=\frac{P_{4}}{2} .
$$

Since $P_{6} P_{4}=0$, we verify part (iii) of Lemma 12.5.5 in that $P_{6} S_{6}=S_{6} P_{6}=0$.
Since $P_{4}^{2}=P_{4}$, we obtain $S_{6}^{k+1}=(1 / 2)^{k+1} P_{4}$, thus giving the Laurent series of the resolvent about $\lambda=6$, namely

$$
R_{A}(z)=\frac{D_{6}}{(z-6)^{2}}+\frac{P_{6}}{z-6}+P_{4} \sum_{k=0}^{\infty} \frac{(-1)^{k}(z-6)^{k}}{2^{k+1}}
$$

Using the geometric series one can verify that

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}(z-6)^{k}}{2^{k+1}}=\frac{1}{z-4}
$$

Example (in lieu of 12.5.6). We compute the Laurent series

$$
R_{A}(z)=\sum_{k=-\infty}^{\infty} A_{k}(z-2)^{k}
$$

for the linear operator

$$
A=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

To this end we need P_{2}, D_{2}, and S_{2}.
We computed previously that

$$
\begin{aligned}
R_{A}(z)= & \frac{1}{z-2}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 / 9 \\
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]+\frac{1}{(z-2)^{2}}\left[\begin{array}{cccc}
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& +\frac{1}{(z-2)^{3}}\left[\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]+\frac{1}{z-5}\left[\begin{array}{cccc}
0 & 0 & 0 & 1 / 9 \\
0 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The spectral projections are

$$
P_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 / 9 \\
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and } P_{5}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 / 9 \\
0 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

We also have

$$
D_{2}=A_{-2}=\left[\begin{array}{cccc}
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and by way of verification that

$$
D_{2}^{2}=\left[\begin{array}{cccc}
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=A_{-3}
$$

To find S_{2} we have by part (iv) of Lemma 12.5 .5 that

$$
\sum_{k=0}^{\infty}(-1)^{k}(z-2)^{k} S_{2}^{k+1}=R_{A}(z)-\left(\frac{P_{2}}{z-2}+\frac{D_{2}}{(z-2)^{2}}\right)
$$

and by part (v) of Lemma 12.5.5 that

$$
P_{2} R_{A}(z)=\frac{P_{2}}{z-2}+\frac{D_{2}}{(z-2)^{2}}
$$

Combining these gives

$$
\sum_{k=0}^{\infty}(-1)^{k}(z-2)^{k} S_{2}^{k+1}=R_{A}(z)-P_{2} R_{A}(z)=\left(I-P_{2}\right) R_{A}(z)=R_{A}(z) P_{5}=\frac{P_{5}}{z-5}
$$

where we have used the completeness $P_{2}+P_{5}=I$ and part (iv) of Lemma 12.5.5 applied to $\lambda=5$.
Evaluation of the equality at $z=2$ gives $S_{2}=-(1 / 3) P_{5}$.
[Note the book incorrectly says to integrate to get this for the example it considers.]
Thus the Laurent series for the resolvent of A around $\lambda=2$ is

$$
R_{A}(z)=\frac{D_{2}^{2}}{(z-2)^{3}}+\frac{D_{2}}{(z-2)^{2}}+\frac{P_{2}}{z-2}-P_{5} \sum_{k=0}^{\infty} \frac{(z-2)^{k}}{3^{k+1}}
$$

Using the geometric series we can verify that

$$
-\sum_{k=0}^{\infty} \frac{(z-2)^{k}}{3^{k+1}}=\frac{1}{z-5}
$$

We mentioned previously that $A \neq 2 P_{2}+5 P_{5}$ since A is not semisimple, but that something else was happening.
The spectral decomposition of A is $2 P_{2}+D_{2}+5 P_{2}$ because

$$
\begin{aligned}
2 P_{2}+D_{2}+5 P_{5} & =2\left[\begin{array}{cccc}
1 & 0 & 0 & -1 / 9 \\
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{cccc}
0 & 1 & 0 & -1 / 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]+5\left[\begin{array}{cccc}
0 & 0 & 0 & 1 / 9 \\
0 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]=A .
\end{aligned}
$$

