
Math 346 Lecture #35
12.5 Spectral Decomposition I

The goal of this and the next section is to establish the existence of a spectral decom-
position of any linear operator on Cn. Such a spectral decomposition depends on the
spectral projections which are the residues of the resolvent at the eigenvalues. But such
a spectral decomposition also depends, as we saw in the last lecture, on other terms in
the Laurent series of the resolvent about the eigenvalues. We begin to develop a better
understanding of the Laurent series of the resolvent in this section.

For A ∈ Mn(C) and λ ∈ σ(A), there exist Ak ∈ Mn(C), k ∈ Z, (depending on λ) such
that the resolvent of A as a Laurent series about λ has the form

RA(z) =
∞∑

k=−∞

Ak(z − λ)k.

By the Laurent Expansion Theorem, we have for each k ∈ Z that

Ak =
1

2πi

‰
Γ

RA(z)

(z − λ)k+1
dz

for a positively oriented simple closed contour Γ enclosing λ but no other element of
σ(A). The coefficient A−1 is the spectral projection Pλ. We are going to discover the
nature of the relationships that exist among all the coefficient matrices Ak in Laurent
series for RA(z) about λ.

Nota Bene 12.5.1. Be aware that Ak is a coefficient matrix in a Laurent series while
Ak is the kth power of A.

Notation. For n ∈ Z, define

ηn =

{
1 if n ≥ 0,

0 if n < 0.

This is a characteristic or indicator function on the set Z.

Lemma 12.5.2. For A ∈Mn(C) and λ ∈ σ(A), let Γ and Γ′ be two positively oriented
simple closed contours in ρ(A) enclosing λ and no other element of σ(A). Assume further
that Γ is in the interior of Γ′, that z′ ∈ Γ′, and z ∈ Γ. Then for all m ∈ N there holds

(i)
1

2πi

‰
Γ

(z − λ)−m−1(z′ − z)−1 dz = ηm(z′ − λ)−m−1,

and for all n ∈ N there holds

(ii)
1

2πi

‰
Γ′

(z′ − λ)−n−1(z′ − z)−1 dz′ = (1− ηn)(z − λ)−n−1.

Proof. (i) Since every point z′ on Γ′ is outside of Γ, the function (z′−z)−1 is holomorphic
within Γ.



Using the geometric series, we expand (z′ − z)−1 in terms of z − λ:

1

z′ − z
=

1

z′ − λ
· 1

1−
(
z−λ
z′−λ

) =
1

z′ − λ

∞∑
k=0

(
z − λ
z′ − λ

)k
=
∞∑
k=0

(z − λ)k

(z′ − λ)k+1
.

WLOG we may shrink Γ to a small circle Γλ centered at λ with every point on Γλ closer
to λ than z′.

For a fixed m ∈ N we then have

1

2πi

‰
Γλ

(z − λ)−m−1(z′ − z)−1 dz

=
1

2πi

‰
Γλ

(z − λ)−m−1

[
∞∑
k=0

(z − λ)k

(z′ − λ)k+1

]
dz

=
∞∑
k=0

(z′ − λ)−k−1

[
1

2πi

‰
Γλ

(z − λ)−m−1+k dz

]
.

By Lemma 11.3.5 we have

1

2πi

‰
Γλ

(z − λ)−m−1+k dz =

{
1 if k = m,

0 if k 6= m.

When m < 0, the case k = m never occurs since k ≥ 0, thus giving

1

2πi

‰
Γλ

(z − λ)−m−1(z′ − z)−1 dz = 0.

When m ≥ 0, only one of the integrals is nonzero, and that occurs when k = m, thus
giving

1

2πi

‰
Γλ

(z − λ)−m−1(z′ − z)−1 dz = (z′ − λ)−m−1.

These two outcomes for the integral combine through the function ηm to give

1

2πi

‰
Γλ

(z − λ)−m−1(z′ − z)−1 dz = ηm(z′ − λ)−m−1.

(ii) In this case, both λ and z lies inside Γ′.

Using the Cauchy-Goursat Theorem, the same circle Γλ from part (i), a small circle Γz
centered at z such that Γz does not intersect Γ′, and the appropriate cuts, we have

1

2πi

‰
Γ′

(z′ − λ)−n−1(z′ − z)−1 dz′

=
1

2πi

‰
Γλ

(z′ − λ)−n−1(z′ − z)−1 dz′

+
1

2πi

‰
Γz

(z′ − λ)−n−1(z′ − z)−1 dz′.



For the former integral we have

1

2πi

‰
Γλ

(z′ − λ)−n−1(z′ − z)−1 dz′

= − 1

2πi

‰
Γλ

(z′ − λ)−n−1(z − z′)−1 dz′ = −ηn(z − λ)−n−1

by an argument similar to that in part (i) with Γ replaced with Γ′ and z and z′ switched.

For the latter integral we have by the Cauchy Integral formula that

1

2πi

‰
Γz

(z′ − λ)−n−1

z′ − z
dz′ = (z − λ)−n−1

since z′ → (z′ − λ)−n−1 is holomorphic on a simply connected open set containing Γz.

Combining the two integrals gives the result. �

Lemma 12.5.3. The matrix coefficients Ak in the Laurent expansion

RA(z) =
∞∑

k=−∞

Ak(z − λ)k

about λ ∈ σ(A) satisfy
AmAn = (1− ηm − ηn)Am+n+1.

Proof. Let Γ and Γ′ be two positively oriented simply closed contours enclosing λ ∈ σ(A)
but no other element of σ(A), and further assume that Γ is in the interior of Γ′.

For m,n ∈ N we write

Am =
1

2πi

‰
Γ

RA(z)

(z − λ)m+1
dz, An =

1

2πi

‰
Γ′

RA(z′)

(z′ − λ)n+1
dz′.

Using properties of the resolvent in Lemma 12.3.5, and Fubini’s Theorem, we have

AmAn =

(
1

2πi

)2 ‰
Γ

‰
Γ′

(z − λ)−m−1(z′ − λ)−n−1RA(z′)RA(z) dz′dz

=

(
1

2πi

)2 ‰
Γ

‰
Γ′

(z − λ)−m−1(z′ − λ)−n−1RA(z)−RA(z′)

z′ − z
dz′dz

=

(
1

2πi

)2 ‰
Γ

(z − λ)−m−1R(z)

[‰
Γ′

(z′ − λ)−n−1(z′ − z)−1 dz′
]
dz

−
(

1

2πi

)2 ‰
Γ′

(z′ − λ)−n−1R(z′)

[‰
Γ

(z − λ)−m−1(z′ − z)−1 dz

]
dz′

=
1

2πi

‰
Γ

(z − λ)−m−1R(z)(1− ηn)(z − λ)−n−1 dz

− 1

2πi

‰
Γ′

(z′ − λ)−n−1R(z′)ηm(z′ − λ)−m−1 dz′



The integrand of the second integral has an isolated singularity at λ, and so by the
Cauchy-Goursat Theorem and the appropriate cut we can replace Γ′ with Γ and z′ with
z without changing the the value of the second integral.

This gives for AnAm the expression

1

2πi

‰
Γ

[
(z − λ)−m−1R(z)(1− ηn)(z − λ)−n−1 − (z − λ)−n−1R(z)ηm(z − λ)−m−1

]
dz

=
1

2πi

‰
Γ

(z − λ)−m−1(z − λ)−n−1R(z)
[
1− ηn − ηm

]
dz

= [1− ηm − ηn]
1

2πi

‰
Γ

(z − λ)−m−n−2R(z) dz

= [1− ηm − ηn]Am+n+1.

This gives the identity AmAn = (1− ηm − ηn)Am+n+1. �

Remark 12.5.4. Since Pλ = A−1, Lemma 12.5.3 gives another proof that

P 2
λ = A−1A−1 = (1− η−1 − η−1)A−1−1+1 = A−1 = Pλ.

Notation. To express the relationships that exists among the coefficient matrices Ak in
the Laurent series of RA(z) about λ, we define

Dλ = A−2 and Sλ = A0.

Lemma 12.5.5. For A ∈Mn(C) and λ ∈ σ(A), there holds

(i) A−n = Dn−1
λ for all n ≥ 2,

(ii) An = (−1)nSn+1
λ for all n ≥ 1,

(iii) the spectral projection Pλ commutes with Dλ and with Sλ, where in particular,

PλDλ = Dλ, PλSλ = 0,

(iv) The Laurent series of RA(z) about λ is

RA(z) =
Pλ
z − λ

+
∞∑
k=1

Dk
λ

(z − λ)k+1
+
∞∑
k=0

(−1)k(z − λ)kSk+1
λ ,

(v) the spectral projection Pλ commutes with RA(z), where in particular

PλRA(z) =
Pλ
z − λ

+
∞∑
k=1

Dk
λ

(z − λ)k+1
.

The proof of these is HW (Exercises 12.23, 12.24, and 12.25).

Remark. The Laurent series for RA(z) about λ ∈ σ(A) is completely determined by
three matrices Pλ = A−1, Dλ = A−2, and Sλ = A0.



Example. We verify some parts of Lemma 12.5.5 for the linear operator

A =

6 1 0
6 1 7
0 0 4


and use other parts of Lemma 12.5.5 to compute Laurent series expansion of RA(z) about
λ = 6.

We computed previously that

RA(z) =
1

z − 6

1 0 −7/4
0 1 7/2
0 0 0

+
1

(z − 6)2

0 1 7/2
0 0 0
0 0 0

+
1

z − 4

0 0 7/4
0 0 −7/2
0 0 1

 ,
so that the spectral projections are

P6 =

1 0 −7/4
0 1 7/2
0 0 0

 and P4 =

0 0 7/4
0 0 −7/2
0 0 1

 .
Also from the partial fraction decomposition of RA(z) we have

D6 =

0 1 7/2
0 0 0
0 0 0

 and D4 = 0.

We may thus neatly write

RA(z) =
P6

z − 6
+

D6

(z − 6)2
+

P4

z − 4
.

Verifying part (iii) of Lemma 12.5.5, the matrices P6 and D6 satsify

P6D6 =

1 0 −7/4
0 1 7/2
0 0 0

0 1 7/2
0 0 0
0 0 0


=

0 1 7/2
0 0 0
0 0 0

 = D6

=

0 1 7/2
0 0 0
0 0 0

1 0 −7/4
0 1 7/2
0 0 0

 = D6P6.

The matrix D6 satisfies

D2
6 =

0 1 7/2
0 0 0
0 0 0

0 1 7/2
0 0 0
0 0 0

 = 0.



Thus Dk
6 = 0 for all k ≥ 2, so that

∞∑
k=1

Dk
6

(z − 6)k+1
=

D6

(z − 6)2
.

We could compute S6 by writing 1/(z − 4) as a geometric series in (z − 6).

Instead we make use of parts (iv) and (v) of Lemma 12.5.5. First, by part (iv) we have

∞∑
k=0

(−1)k(z − 6)kSk+1
6 = RA(z)−

(
P6

z − 6
+

D6

(z − 6)2

)
.

By part (v) we have

RA(z)P6 =
P6

z − 6
+

D6

(z − 6)2
.

Combining these gives

∞∑
k=0

(−1)k(z − 6)kSk+1
6 = RA(z)−RA(z)P6 = RA(z)(I − P6) = RA(z)P4

by the completeness P6 + P4 = I.

In the product RA(z)P4 we have P6P4 = 0 and P 2
4 = 0, but what is D6P4? It is0 1 7/2

0 0 0
0 0 0

0 0 7/4
0 0 −7/2
0 0 1

 = 0.

Is this just a coincidence? According to part (v) of Lemma 12.5.5 it is not!

We thus have

RA(z)P4 =
P4

z − 4
.

The point of all of this is that we have

∞∑
k=0

(−1)k(z − 6)kSk+1
6 =

P4

z − 4
.

Evaluating this equality at z = 6 gives

S6 =
P4

2
.

Since P6P4 = 0, we verify part (iii) of Lemma 12.5.5 in that P6S6 = S6P6 = 0.

Since P 2
4 = P4, we obtain Sk+1

6 = (1/2)k+1P4, thus giving the Laurent series of the
resolvent about λ = 6, namely

RA(z) =
D6

(z − 6)2
+

P6

z − 6
+ P4

∞∑
k=0

(−1)k(z − 6)k

2k+1
.



Using the geometric series one can verify that

∞∑
k=0

(−1)k(z − 6)k

2k+1
=

1

z − 4
.

Example (in lieu of 12.5.6). We compute the Laurent series

RA(z) =
∞∑

k=−∞

Ak(z − 2)k

for the linear operator

A =


2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

 .
To this end we need P2, D2, and S2.

We computed previously that

RA(z) =
1

z − 2


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

+
1

(z − 2)2


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0



+
1

(z − 2)3


0 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0

+
1

z − 5


0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

 .
The spectral projections are

P2 =


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

 and P5 =


0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

 .
We also have

D2 = A−2 =


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0


and by way of verification that

D2
2 =


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0




0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0

 =


0 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0

 = A−3.



To find S2 we have by part (iv) of Lemma 12.5.5 that

∞∑
k=0

(−1)k(z − 2)kSk+1
2 = RA(z)−

(
P2

z − 2
+

D2

(z − 2)2

)
and by part (v) of Lemma 12.5.5 that

P2RA(z) =
P2

z − 2
+

D2

(z − 2)2
.

Combining these gives

∞∑
k=0

(−1)k(z − 2)kSk+1
2 = RA(z)− P2RA(z) = (I − P2)RA(z) = RA(z)P5 =

P5

z − 5
,

where we have used the completeness P2 +P5 = I and part (iv) of Lemma 12.5.5 applied
to λ = 5.

Evaluation of the equality at z = 2 gives S2 = −(1/3)P5.

[Note the book incorrectly says to integrate to get this for the example it considers.]

Thus the Laurent series for the resolvent of A around λ = 2 is

RA(z) =
D2

2

(z − 2)3
+

D2

(z − 2)2
+

P2

z − 2
− P5

∞∑
k=0

(z − 2)k

3k+1
.

Using the geometric series we can verify that

−
∞∑
k=0

(z − 2)k

3k+1
=

1

z − 5
.

We mentioned previously that A 6= 2P2 + 5P5 since A is not semisimple, but that some-
thing else was happening.

The spectral decomposition of A is 2P2 +D2 + 5P2 because

2P2 +D2 + 5P5 = 2


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

+


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0

+ 5


0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1



=


2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

 = A.


