Math 346 Lecture #35
12.5 Spectral Decomposition I

The goal of this and the next section is to establish the existence of a spectral decom-
position of any linear operator on C"”. Such a spectral decomposition depends on the
spectral projections which are the residues of the resolvent at the eigenvalues. But such
a spectral decomposition also depends, as we saw in the last lecture, on other terms in
the Laurent series of the resolvent about the eigenvalues. We begin to develop a better
understanding of the Laurent series of the resolvent in this section.

For A € M,(C) and A € o(A), there exist A, € M,(C), k € Z, (depending on A) such
that the resolvent of A as a Laurent series about A\ has the form

Ra(z) = Y Ap(z= "

k=—00
By the Laurent Expansion Theorem, we have for each k € Z that

1 RA(Z)
Ap=— 2 g
k 27rz'§é(z—)\)k+1 :

for a positively oriented simple closed contour I' enclosing A but no other element of
o(A). The coefficient A_; is the spectral projection Py. We are going to discover the
nature of the relationships that exist among all the coefficient matrices A; in Laurent
series for R4(z) about A.

Nota Bene 12.5.1. Be aware that A, is a coefficient matrix in a Laurent series while
AF is the k™ power of A.

Notation. For n € Z, define

1 itn>o0,
"=Y0 ifn<o.

This is a characteristic or indicator function on the set Z.

Lemma 12.5.2. For A € M, (C) and A € 6(A), let T" and I be two positively oriented
simple closed contours in p(A) enclosing A and no other element of o(A). Assume further
that I' is in the interior of IV, that 2z’ € I, and z € I". Then for all m € N there holds

. 1 —m— / — / —m—
(i) - F(z—)\) 1(z —2) ! dz =N (2" = A) L

and for all n € N there holds

(i) —— %/(z' LA — ) dY = (1= ) (2 — AL

271

Proof. (i) Since every point 2’ on I is outside of I, the function (2’ —z)~! is holomorphic
within I".



Using the geometric series, we expand (2’ — 2z)~! in terms of z — \:

1 1 1 1 S/ z2=2\" & (2= A
Z’—Z_Z’—/\'l—(z_)‘)_Z'—A;(Z'—)\> —Z(z’—/\)k“'

z/—=A k=0

WLOG we may shrink I' to a small circle I'y centered at A with every point on 'y closer
to A than 2.

For a fixed m € N we then have

1 —m—1/_/ -1
5 FA(z —A) (z' —2)7" dz
1 e (= AR
=— A)ml d
2mi Jr, 2= Lz:% () — )\)k+1]

By Lemma 11.3.5 we have

1
— (Z . )\)—m—l-l-k dz = {
2 Jp,

1 if k=m,
0 ifk#m.

When m < 0, the case £ = m never occurs since k£ > 0, thus giving

1
— PO (=N =) dz=0.
21 Ty
When m > 0, only one of the integrals is nonzero, and that occurs when k& = m, thus
giving
1
— O (=N =) de = (=N

21 Jp,
These two outcomes for the integral combine through the function n,, to give

1
5 FA(Z —AN) TN =) dr = (2 - A) T

(ii) In this case, both A and z lies inside I".

Using the Cauchy-Goursat Theorem, the same circle I'y from part (i), a small circle T,
centered at z such that I', does not intersect IV, and the appropriate cuts, we have

1
5 F/(z’ — NN =)t dY
1 / —n—1( 1 g
- AT — ) d
57 FA(,z ) (' —2)7" dz
1
+— @ (& =N =) d

21 Jr,



For the former integral we have

1
% (Z’ . A)fnfl(zl o z)—l dZI
1 o . e
=5~ (Z =N e =) dY = (2 — N
'

by an argument similar to that in part (i) with I' replaced with IV and z and 2’ switched.
For the latter integral we have by the Cauchy Integral formula that

1 I )\ —n—1
_% (Z,—) dz = (Z — )\)7”71
I. z

211 -z

since 2 — (2/ — A\)7""! is holomorphic on a simply connected open set containing T',.
Combining the two integrals gives the result. 0

Lemma 12.5.3. The matrix coefficients A, in the Laurent expansion

= i Ap(z = N)F

k=—o00

about A € o(A) satisfy
AmAn = (1 — Nm — nn)Am+n+1-

Proof. Let I and I” be two positively oriented simply closed contours enclosing A € o(A)
but no other element of 0(A), and further assume that I" is in the interior of I".

For m,n € N we write

1 RA(Z) . L RA(Z,)

— dz, A, = — d
2 Jp (z — A)mHt = 21 Jp (28— A)ntt :

A =

Using properties of the resolvent in Lemma 12.3.5, and Fubini’s Theorem, we have

(%) 51§ ﬁ &' = N) T RA(Z)Ralz) d2'dz
(QL) §1§y§ o ay i gyt B RalE) g,
1

_ (7) _ ) IR() Bé/(z’ ) — ) dz’] dz




The integrand of the second integral has an isolated singularity at A, and so by the
Cauchy-Goursat Theorem and the appropriate cut we can replace IV with I and 2z’ with
z without changing the the value of the second integral.

This gives for A, A,, the expression

i ) (= NTTRE A )z = N = (= )T RE (2 = )T de
= o e N AR ]

= [1 = 1 — 7] 271T yg(z —\) """ 2R(2) dz

= [1 — Nm — nn]Am—&-n—&-l-
This gives the identity A, A, = (1 — 0 — M) Amsnsr - O
Remark 12.5.4. Since P, = A_;, Lemma 12.5.3 gives another proof that
P,\2 =A A, = (1 —N-1—- 77—1)A—1—1+1 =A_ =P

Notation. To express the relationships that exists among the coefficient matrices A;, in
the Laurent series of R4(z) about A, we define

D)\ = A_2 and S)\ = Ao.

Lemma 12.5.5. For A € M, (C) and X € o(A), there holds

(i) A, =Dy ' foralln > 2,
(ii) A, = (—=1)"Sy*! for all n > 1,
(iii) the spectral projection Py, commutes with D, and with Sy, where in particular,

P\D, = Dy, P\S\ =0,

(iv) The Laurent series of R4(z) about A is

Ra(z )\ + Z k+1 + Z kskﬂ
k=1 —

k=0

(v) the spectral projection Py commutes with R(z), where in particular

PyRa(z >\+Z k+1
k=1

The proof of these is HW (Exercises 12.23, 12.24, and 12.25).

Remark. The Laurent series for R4(z) about A € o(A) is completely determined by
three matrices P, = A_1, Dy = A_,, and S, = Aj.



Example. We verify some parts of Lemma 12.5.5 for the linear operator

A:

oo o
PN )

1
1
0
and use other parts of Lemma 12.5.5 to compute Laurent series expansion of R4(z) about

A =06.
We computed previously that

1 1 0 —7/4 1 01 7/2 1 00 7/4
Ra(z) = 01 7/2 |+ 510 0 0]+ 00 =7/2|,
=6loo o | G=9loo o] %00 1
so that the spectral projections are
1 0 —7/4 0 0 7/4
Ps=|0 1 7/2 | and P,= |0 0 —7/2
00 0 00 1

Also from the partial fraction decomposition of R4(z) we have

01 7/2
Dg=10 0 0 | and Dy, =0.
00 O
We may thus neatly write
P D P,
Ra(z) = —> + —2 4+ 2

z—6 (2—6)2 z—-4

Verifying part (iii) of Lemma 12.5.5, the matrices Py and Dg satsify

10 —7/4] [0 1 7/2
PsDg= |0 1 7/2 (0 0 0
00 0 00 0
[0 1 7/2]
=10 0 0 |=Ds
00 0
[0 1 7/2] [1 0 —7/4]
=10 0 0|0 1 7/2|=DgPs.
00 0]|00 0 |
The matrix Dg satisfies
01 7/2] [0 1 7/2]
Di=100 0[[00 O0[=0
00 0/]]|0O0 O]




Thus D¥ = 0 for all k > 2, so that

P (Z _ 6)k+1 (Z _ 6)2'

We could compute Sg by writing 1/(z — 4) as a geometric series in (z — 6).

Instead we make use of parts (iv) and (v) of Lemma 12.5.5. First, by part (iv) we have
- P D
E : K+l _ _ 6 6
- st =) - (25 + 25

By part (v) we have

Combining these gives

o

D (=1)F(z = 6)F ST = Ra(z) — Ra(2)Ps = Ra(2)(I — Ps) = Ra(2)Ps

by the completeness Ps + P, = I.

In the product Ra(z)P; we have PsPy = 0 and P} = 0, but what is DgP,? Tt is
01 7/21 [0 0 7/4
00 O 00 —7/2| =0.
00 O 00 1

Is this just a coincidence? According to part (v) of Lemma 12.5.5 it is not!

We thus have

P
Ra(2)Ps = - _44.
The point of all of this is that we have
00 P4
Sk-i—l )
kZ:O z—4
Evaluating this equality at z = 6 gives
P
S = 74

Since Ps Py = 0, we verify part (iii) of Lemma 12.5.5 in that PsSs = S¢Ps = 0.

Since P} = P,, we obtain Sg™ = (1/2)*"'P,, thus giving the Laurent series of the
resolvent about A = 6, namely

Ds Ps — (—1)*(z — 6)"
= P ~ =
RA(Z) (Z—6)2+Z—6+ 4; kil



Using the geometric series one can verify that

= (=1)k(z —6)F 1
zﬁ )™( ) _

Qk+1 2= 4

k=0

Example (in lieu of 12.5.6). We compute the Laurent series

for the linear operator

21 00
0210
A= 00 2 3
00 0 5
To this end we need P, Dy, and S5.
We computed previously that
100 —-1/9 010 —1/3
1 010 —1/3 1 001 -1
BaG)="=51lo o1 1| GE=22|o 00 o
0 00 0 0 0O 0
001 -1 000 1/9
n 1 000 O . 1 00 0 1/3
(z=2) {0 0 0 0 z—510 0 0 1
000 O 000 1
The spectral projections are
1 00 —1/9 000 1/9
|01 0 —1/3 |00 0 1/3
Pr=tg o1 1| ™dB=15 090 1
0 00 0 00 0 1
We also have
010 —1/3
001 -1
Do=As=14 ¢ ¢ o
0 0 O 0
and by way of verification that
010 —-1/3] (01 0 —1/3 001 -1
D2 _ 001 -1 ocoo1 -1 000 0] _
2710 00 0 0 00 0 000 0}
0 0 O 0 0 00 0 000 O



To find Sy we have by part (iv) of Lemma 12.5.5 that

io 2 SE = Ry (2) — <Z}j22 " (2 1322)2)

and by part (v) of Lemma 12.5.5 that

P2 DQ
P =
2RA(Z) -2 (z — 2)2
Combining these gives
N 2)k g+l = Py
Z S5 =Ra(z) — PaRA(2) = (I — P2)Ra(2) = Ra(2)Ps = —

k=0

where we have used the completeness P» + P5 = I and part (iv) of Lemma 12.5.5 applied
to A = 5.

Evaluation of the equality at z = 2 gives Sy = —(1/3)Ps.
[Note the book incorrectly says to integrate to get this for the example it considers.]

Thus the Laurent series for the resolvent of A around \ = 2 is

D% DQ 2 Z — 2
= — P
RA(Z) (z — 2)3 + (2 — 2)2 + 5 § 3k‘+1

Using the geometric series we can verify that
- (z —2)* 1
Z 3+l . g

k=0

We mentioned previously that A # 2P, 4+ 5P since A is not semisimple, but that some-
thing else was happening.

The spectral decomposition of A is 2P, + Dy + 5P, because

1 00 —1/9 010 —1/3 000 1/9
.10 1.0 —1/3 001 -1 000 1/3
2Py + Dy +5P5 =2 00 1 -1 + 000 0 +5 000 1
000 O 000 O 000 1
2100
0210
{00 2 3 =4
000 5



