
Math 346 Lecture #36
12.6 Spectral Decomposition II

We are now in the position of proving the existence of the spectral decomposition

A =
∑

λ∈σ(A)

(
λPλ +Dλ)

for every linear operator A ∈ Mn(C). This spectral decomposition includes the one
for semisimple linear operators. We have already seen two examples of the spectral
decomposition for non-semisimple linear operators. We will also prove that the range
of each spectral projection Pλ is precisely the generalized eigenspace, and formalize the
simplified partial fraction form of the resolvent we have seen many times. We begin with
understanding the linear operator Dλ that appears in the spectral decomposition.

Lemma 12.6.1. For A ∈ Mn(C) and λ ∈ σ(A), the linear operator Dλ (the matrix
coefficient A−2 in the Laurent series of RA(z) about λ) satisfies

Dλ = (A− λI)Pλ.

Moreover, the spectral radius of Dλ is zero.

Proof. The equation Dλ = (A− λI)Pλ holds if and only if

APλ = λPλ +Dλ

holds, so it suffices to verify that latter equation.

Let Γλ be a positively oriented circle centered at λ with small enough radius to exclude
other elements of σ(A).

By definition of the resolvent, we have RA(z)(zI − A) = I, from which we get

zRA(z) = AR(z) + I

where we have used ARA(z) = RA(z)A from Lemma 12.3.5.

Since

Pλ =
1

2πi

‰
Γλ

RA(z) dz and
1

2πi

‰
Γλ

I(z) dz = 0,

where I(z) = z is entire, we have that

APλ =
1

2πi

‰
Γλ

ARA(z) dz

=
1

2πi

‰
Γλ

ARA(z) dz +
1

2πi

‰
Γλ

I dz

=
1

2πi

‰
Γλ

(
ARA(z) + I(z)

)
dz

=
1

2πi

‰
Γλ

zRA(z) dz.



By writing z = (z − λ) + λ we obtain

APλ =
1

2πi

‰
Γλ

λRA(z) dz +
1

2πi

‰
Γλ

(z − λ)RA(z) dz

=
λ

2πi

‰
Γλ

RA(z) dz +
1

2πi

‰
Γλ

RA(z)

(z − λ)−2+1
dz

= λA−1 + A−2

= λPλ +Dλ.

To show that r(Dλ) = 0, we parameterize Γλ by z(t) = λ + ρeit for 0 < ρ < 1 with ρ
small enough so that Γλ encloses λ but no other element of σ(A).

By Lemma 12.5.5 part (i) we have that A−(k+1) = Dk
λ for all n ≥ 1.

Now

A−(k+1) =
1

2πi

‰
Γλ

RA(z)

(z − λ)−k
dz.

Thus for any matrix norm ‖ · ‖ on Mn(C) we have

‖Dk
λ‖ =

∥∥∥∥ 1

2πi

‰
Γλ

(z − λ)kRA(z) dz

∥∥∥∥
1

2π

∥∥∥∥ˆ 2π

0

ρkeiktRA(λ+ ρeit)ρieit dt

∥∥∥∥
≤ ρk+1 sup{‖R(z)‖ : z ∈ Γλ}.

Since Γλ is compact and RA(z) is continuous on Γλ, the quantity

M = sup{‖R(z)‖ : z ∈ Γλ}

is finite.

Thus we obtain
r(Dλ) = lim

k→∞
‖Dk

λ‖1/k ≤ lim
k→∞

ρ1+1/kM1/k = ρ.

Since ρ > 0 can be arbitrarily small we arrive at r(Dλ) = 0. �

Example (in lieu of 12.6.2). We verify Dλ = (A− λI)Pλ for

A =


2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5


and λ = 2. Recall that

P2 =


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

 and D2 =


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0

 .



For the verification we have

(A− 2I)P2 =


0 1 0 0
0 0 1 0
0 0 0 3
0 0 0 3




1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0



=


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0

 = D2.

Remark. Recall that a matrix B ∈Mn(C) is called nilpotent if there is l ∈ N such that
Bl = 0.

Lemma 12.6.3. A matrix B ∈Mn(C) satisfies r(B) = 0 if and only if B is nilpotent.

Proof. Suppose that r(B) = 0.

Then σ(B) = {0}, i.e., every eigenvalue of B is zero.

Hence the characteristic polynomial of B is p(z) = zn.

By the Cayley-Hamilton Theorem, we have have Bn = p(B) = 0, which says that B is
nilpotent.

Now suppose that B is nilpotent.

Then there exists l ∈ N such that Bl = 0.

This implies that Bk = 0 for all k ≥ l.

Hence for any matrix norm ‖ · ‖ we have ‖Bk‖ = 0 for all k ≥ l.

This implies that r(B) = limk→∞ ‖Bk‖1/k = 0. �.

Remark. Lemmas 12.6.1 and 12.6.3 show that the linear operator Dλ is nilpotent.

Definition. For A ∈ Mn(C) and λ ∈ σ(A), the nilpotent linear operator Dλ is called
the eigennilpotent of A associated with the eigenvalue λ.

Remark 12.6.4. Recall that the order of a nilpotent B ∈ Mn(C) is the smallest l ∈ N
such that Bl = 0. Since Bl = Bl+1 = 0, then N (Bl) = N (Bl+1), and so ind(B) = l,
i.e., the order of B is the same as the index of B. From Exercise 12.6 we have that the
index of B is no bigger than n, meaning that l ≤ n.

Proposition 12.6.5. For A ∈Mn(C) and λ ∈ σ(A), the order mλ of the eigennilpotent
Dλ of A satisfies

mλ ≤ dim(R(Pλ)).

Proof. It suffices to show that R(Pλ) is Dλ-invariant and that R(Dλ) ⊂ R(Pλ).

By Lemma 12.5.5 part (iii) we have that Dλ = PλDλ = DλPλ.

To show that R(Pλ) is Dλ-invariant, let y ∈ R(Pλ).

Then there exists x ∈ Cn such that y = Pλx.

Hence Dλy = DλPλx = Pλ(Dλx) ∈ R(Pλ), implying R(Pλ) is Dλ-invariant.



To show that R(Dλ) ⊂ R(Pλ), let y ∈ R(Dλ).

Then there is x ∈ Cn such that y = Dλx.

Hence y = Dλx = Pλ(Dλx) ∈ R(Pλ), implying that R(Dλ) ⊂ R(Pλ).

That mλ ≤ dim(R(Pλ)) follows from Exercise 12.6. �

Remark 12.6.6. Proposition 12.6.5 implies that the resolvent RA(z) has no essential
singularities, so that it is meromorphic on ρ(A). More precisely, part (iv) of Lemma
12.5.5 simplifies to

RA(z) =
Pλ
z − λ

+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1
+
∞∑
k=0

(−1)k(z − λ)kSk+1
λ

and part (v) of Lemma 12.5.5 simplifies to

PλRA(z) =
Pλ
z − λ

+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1
.

Remark. We now turn attention to showing that R(Pλ) is the generalized eigenspace
Eλ, and developing some results to be used in the next section to establish uniqueness
of the spectral decomposition. We notice that if y ∈ R(Pλ), then (λI − A)y ∈ R(Pλ)
because for y = Pλx we have

(λI − A)y = (λI − A)Pλx = Dλx,

and in the proof of Proposition 12.6.5 we showed that R(Dλ) ⊂ R(Pλ), whence that
(λI − A)y ∈ R(Pλ). The converse is also true as we show next.

Lemma 12.6.7. For A ∈Mn(C), let λ ∈ σ(A) and y ∈ Cn. If (λI −A)y ∈ R(Pλ), then
y ∈ R(Pλ).

Proof. Suppose (λI − A)y ∈ R(Pλ).

There is nothing to show if y = 0, so assume that y 6= 0, and set v = (λI − A)y.

Then v ∈ R(Pλ) so that Pλ(v) = v by Lemma 12.1.3.

Independence of the projections means that Pµv = 0 for all µ ∈ σ(A) \ {λ}.
As shown in the proof of Lemma 12.6.1 we have PµA = µPµ +Dµ for all µ ∈ σ(A).

Thus for µ ∈ σ(A) \ {λ} we have

0 = Pµv = Pµ(λI − A)y = λPµy − µPµy −Dµy = (λ− µ)Pµy −Dµy.

This implies, since DµPµ = Dµ from Lemma 12.5.5 part (iii), that

Dµ(Pµy) = Dµy = (λ− µ)(Pµy).

If Pµy 6= 0, then Dk
µ(Pµy) = (λ − µ)k(Pµy) for all k ∈ N, which would imply that Dµ is

not nilpotent since µ 6= λ.



But Dµ is nilpotent, so it must be that Pµy = 0 for all µ ∈ σ(A) \ {λ}.
From the completeness of the projections

∑
µ∈σ(A) Pµ = I, we obtain

y =
∑

µ∈σ(A)

Pµy = Pλy.

By Lemma 12.1.3 we have that y ∈ R(Pλ). �.

Remark 12.6.8. The proof of Lemma 12.6.7 only depended on projections Pµ and
nilpotents Dµ satisfying the properties (1)

∑
Pµ = I, (2) PµPµ′ = 0 for µ 6= µ′, (3)

DµPµ = Dµ, and (4) APµ = µPµ +Dµ for all µ ∈ σ(A).

Theorem 12.6.9. For A ∈ Mn(C) and λ ∈ σ(A), the generalized eigenspace Eλ is
precisely R(Pλ).

Proof. First we show that Eλ ⊂ R(Pλ).

Recall that Eλ = N ((λI − A)kλ) for kλ = ind(λI − A).

Let y ∈ N ((λI − A)kλ). Then

(λI − A)
(
(λI − A)kλ−1y

)
= (λI − A)kλy = 0 ∈ R(Pλ).

By Lemma 12.6.7 we have that (λI − A)kλ−1y ∈ R(Pλ).

Then
(λI − A)

(
(λI − A)kλ−2y

)
= (λI − A)kλ−1y ∈ R(Pλ),

so by Lemma 12.6.7 we have that (λI − A)kλ−2y ∈ R(Pλ).

We continue repeating this argument until we obtain (λI −A)y ∈ R(Pλ), which implies
by Lemma 12.6.7 that y ∈ R(Pλ).

This shows that Eλ ⊂ R(Pλ).

To get Eλ = R(Pλ) for all λ ∈ σ(A), we compare two direct sum decompositions of Cn

both indexed over the spectrum of A.

The first direct sum decomposition is the one from Theorem 12.2.14, namely that

Cn =
∑

λ∈σ(A)

Eλ.

The second direct sum decomposition is one from follows from the completeness of the
spectral projections,

I =
∑

λ∈σ(A)

Pλ.

For any x ∈ Cn we have

x =
∑

λ∈σ(A)

Pλx ∈
∑

λ∈σ(A)

R(Pλ).



To show this sum is direct we need that

R(Pλ) ∩

 ∑
µ∈σ(A)\{λ}

R(Pµ)

 = {0}

as required by Definition 1.3.6.

To this end we suppose

y ∈ R(Pλ) ∩

 ∑
µ∈σ(A)\{λ}

R(Pµ)

 .

Then y ∈ R(Pλ) and there exist wµ, µ ∈ σ(A) \ {λ}, such that

y =
∑

µ∈σ(A)\{λ}

Pµwµ.

Since y ∈ R(Pλ), we have that y = Pλy by Lemma 12.1.3.

Since PλPµ = 0 for all µ ∈ σ(A) \ {λ} by Theorem 12.4.2, we have that

y = Pλy =
∑

µ∈σ(A)\{λ}

PλPµ(wµ) = 0.

This gives the direct sum decomposition

Cn =
∑

λ∈σ(A)

R(Pλ).

The inclusion Eλ ⊂ R(Pλ) for all λ ∈ σ(A) forces the direct summands of the two direct
sum decompositions of Cn to be the same, namely Eλ = R(Pλ) for all λ ∈ σ(A). �

Remark 12.6.10. The proof of Theorem 12.6.9 only depends on projections with the
properties listed in Remark 12.6.8. This is important in the next section when we prove
the uniqueness of the spectral decomposition.

Theorem 12.6.12 (Spectral Decomposition Theorem). For A ∈ Mn(C), and
λ ∈ σ(A), let Pλ be the spectral projection of A associated to λ, and let Dλ be the
eigennilpotent of A associated to λ with its order mλ. The resolvent of A takes the form

RA(z) =
∑

λ∈σ(A)

[
Pλ
z − λ

+

mλ−1∑
k=1

Dk
λ

(z − k)k+1

]
,

and there holds the spectral decomposition

A =
∑

λ∈σ(A)

(
λPλ +Dλ

)
.



Proof. From Lemma 12.5.5 part (v) and the nilpotency of Dλ we have

RA(z)Pλ =
Pλ
z − λ

+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1
.

Combining this with the completeness of the spectral projections gives

RA(z) = RA(z)I

= RA(z)
∑

λ∈σ(A)

Pλ

=
∑

λ∈σ(A)

RA(z)Pλ

=
∑

λ∈σ(A)

[
Pλ
z − λ

+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1

]
.

This is the stated form of the resolvent RA(z).

We saw in the proof of Lemma 12.6.1 that APλ = λPλ +Dλ.

Combining this with the completeness of the spectral projections gives

A = AI = A
∑

λ∈σ(A)

Pλ =
∑

λ∈σ(A)

APλ =
∑

λ∈σ(A)

(
λPλ +Dλ

)
.

This is the stated spectral projection of A. �

Remark. The form of the resolvent stated in the Spectral Decomposition Theorem is the
precisely form we have already been getting by using the partial fraction decompositions
for the rational function entries of the resolvent.

Example (in lieu of 12.6.13). Find the spectral decomposition for the linear operator

A =

−1 11 −3
−2 8 −1
−1 5 0

 .
The characteristic polynomial of A is

det(zI − A) = z3 − 7z2 + 16z − 12 = (z − 2)2(z − 3).

The adjugate of zI − A is

adj(zI − A) =

z2 − 8z + 5 11z − 15 −3z + 13
−2z + 1 z2 + z − 3 −z + 5
−z − 2 5z − 6 z2 − 7z + 14

 .
Performing nine partial fraction decompositions (one for each entry of the resolvent) gives

RA(z) =
1

z − 2

11 −18 −4
5 −8 −2
5 −9 −1

+
1

(z − 2)2

7 −7 −7
3 −3 −3
4 −4 −4

+
1

z − 3

−10 18 4
−5 9 2
−5 9 2

 .



This form of the resolvent is the one stated in the Spectral Decomposition Theorem.

From this form of the resolvent we have

P2 =

11 −18 −4
5 −8 −2
5 −9 −1

 , D2 =

7 −7 −7
3 −3 −3
4 −4 −4

 , P3 =

−10 18 4
−5 9 2
−5 9 2

 .
The spectral decomposition is

A = 2P2 +D2 + 3P3.

One purpose for having the spectral decomposition of A is in finding quicker means of
computing powers of A in terms of spectral decompositions, such as

A2 = (2P2 +D2 + 3P3)(2P2 +D2 + 3P3)

= 4P 2
2 + 2P2D2 + 6P2P3 + 2D2P2 +D2

2 + 3D2P3 + 6P3P2 + 3P3D2 + 9P 2
3

= 4P2 + 4D2 + 9P3.

Not only can we take powers of A we can also take holomorphic images of A, and get
expressions that look an awful lot like spectral decompositions!

Corollary 12.6.14. For A ∈ Mn(C), let f be holomorphic complex valued function
defined on a simply connected open set containing σ(A). If for λ ∈ σ(A), the complex
constants an,λ are the coefficients in the power series expansion of f about λ, i.e.,

f(z) = f(λ) +
∞∑
n=1

an,λ(z − λ)n,

then

f(A) =
∑

λ∈σ(A)

[
f(λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

]
.

In the case that A is semisimple the expression simplifies to

f(A) =
∑

λ∈σ(A)

f(λ)Pλ.

Proof. For each λ ∈ σ(A) let Γλ be a small circle lying in the simply open set on which
f is holomorphic, and also enclosing λ but no other element of σ(A).

Set a0,λ = f(λ).

By the Spectral Resolution Theorem, interchanging of integration and uniform conver-
gence of series, we have

f(A) =
1

2πi

∑
λ∈σ(A)

‰
Γλ

f(z)RA(z) dz

=
1

2πi

∑
λ∈σ(A)

‰
Γλ

∞∑
k=0

ak,λ(z − λ)kRA(z) dz

=
1

2πi

∑
λ∈σ(A)

∞∑
k=0

ak,λ

‰
Γλ

(z − λ)kRA(z) dz.



By the Spectral Decomposition Theorem we have that

RA(z) =
∑

λ∈σ(A)

[
Pλ
z − λ

+

mλ−1∑
l=1

Dl
λ

(z − λ)l+1

]
.

Thus
‰

Γλ

(z − λ)kRA(z) dz =


Pλ if k = 0,

Dk
λ if k = 1, . . . ,mλ − 1,

0 if k ≥ mλ.

All of the terms with k ≥ mλ in the power series vanish, leaving the finite sum

f(A) =
∑

λ∈σ(A)

[
f(λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

]
.

This gives the result. �

Example (in lieu of 12.6.15). In the previous example, we used the spectral decom-
position

A = 2P2 +D2 + 3P3

to compute
A2 = 4P2 + 4D2 + 9P3.

We will use Corollary 12.6.14 to compute this by finding the coefficients of the power
series expansion of the square function expanded about λ = 2:

f(z) = z2 = (z − 2 + 2)2 = ((z − 2) + 2)2 = 4 + 4(z − 2) + (z − 2)2.

The Taylor series coefficients of f(z) about λ = 2 are

a0,2 = 4, a1,2 = 4, a2,2 = 1, ak,2 = 0 for all k ≥ 3.

Since D3 = 0 we do not need the Taylor coefficients of f(z) = z2 expanded about λ = 3.

By Corollary 12.6.14, using a1,2 = 4, we have

A2 = f(A) =
∑

λ∈σ(A)

[
f(λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

]
= 22P2 + 4D2 + 32P3.

This agrees with what we computed earlier.


