
Math 346 Lecture #37
12.7 Spectral Mapping Theorem

Recall the Semisimple Spectral Mapping Theorem 4.3.12 which states that for a semisim-
ple A ∈Mn(C) and a polynomial p ∈ C[x], the set of eigenvalues of the the linear operator
p(A) is precisely {p(λ) : λ ∈ σ(A)}. We extend this result in two ways: to all linear oper-
ators A ∈Mn(C) and to all complex-valued functions holomorphic on a simply connected
open set containing the spectrum of a given linear operator.

Additionally we prove the uniqueness of the spectral decomposition of a linear operator.
This shows that the conclusion of Corollary 12.6.14 is the spectral decomposition of f(A).
Finally we use the spectral decomposition theory to develop the power method, a means
of computing the eigenvector of a linear operator that has a dominant eigenvalue.

12.7.1 The Spectral Mapping Theorem

For A ∈Mn(C) and f holomorphic on an open simply connected set containing σ(A) we
have two ways to represent the linear operator f(A) ∈ Mn(C), one by contour integral
(the Spectral Resolution formula), and another by means of the spectral decomposition of
A and coefficients of the power series of f about the eigenvalues of A (Corollary 12.6.14).

Theorem 12.7.1 (Spectral Mapping Theorem). For A ∈Mn(C), if f is holomor-
phic on an open disk containing σ(A), then

σ(f(A)) = f(σ(A)).

Moreover, if x ∈ Cn is an eigenvector of A corresponding to λ ∈ σ(A), then x is an
eigenvector of f(A) corresponding to f(λ).

Proof. We have equality of two sets f(σ(A)) and σ(f(A)) to show.

For the inclusion σ(f(A)) ⊂ f(σ(A)) we show that µ 6∈ f(σ(A)) implies µ 6∈ σ(f(A)).

For µ 6∈ f(σ(A)), the function z → f(z)− µ is both holomorphic in a neighbourhood of
σ(A) and is nonzero on σ(A).

Hence f(A)− µI is nonsingular, meaning that µ 6∈ σ(f(A)).

For the inclusion f(σ(A)) ⊂ σ(f(A)) we start with µ ∈ f(σ(A)).

Then there exists λ ∈ σ(A) such that µ = f(λ).

The holomorphic function f is defined on open disk U that contains σ(A).

Define a function g on U by

g(z) =


f(z)− f(λ)

z − λ
if z 6= λ,

f ′(λ) if z = λ.

This function g is holomorphic on the punctured neighbourhood U \ {λ} and it is con-
tinuous at λ.

By Exercise 11.19, the function g is holomorphic on U and satisfies

g(z)(z − λ) = f(z)− f(λ) = f(z)− µ for all z ∈ U.



Because g(z)(z−λ) and f(z)−µ are holomorphic on U we have by the Spectral Resolution
formula that, for a simply closed positively oriented contour Γ enclosing σ(A), there holds

g(A)(A− λI) =
1

2πi

‰
Γ

g(z)(z − λ)RA(z) dz

=
1

2πi

‰
Γ

(f(z)− µ)RA(z) dz

= f(A)− µI.

Let x be an eigenvector of A corresponding to the eigenvector λ.

Then we have that

(f(A)− µI)x = g(A)(A− λI)x = g(A)0 = 0.

This means f(A) − µI is singular, so that µ ∈ σ(f(A)) with x an eigenvector of f(A)
corresponding to µ ∈ σ(f(A)). �

Example (in lieu of 12.7.2). Recall that the eigenvalue/eigenvector pairs of

A =

[
1 1
4 1

]
are λ1 = 3, ξ1 =

[
1 2

]T
and λ2 = −1, ξ2 =

[
1 −2

]T
.

The solution of the initial value problem x′ = Ax, x(0) = x0 is

x(t) = exp(tA)x0.

For each constant α ∈ C, the function fα(z) = eαz is entire.

By the Spectral Mapping Theorem, we have

σ(fα(A)) = fα(σ(A)) = {eαλ1 , eαλ2} = {e3α, e−α},

and the eigenvectors ξ1, ξ2 of A are eigenvectors of fα(A) = exp(αA) corresponding to
e3α and e−α respectively.

Restricting α ∈ R we obtain the eigenvalues e3t and e−t with their corresponding eigen-
vectors ξ1 and ξ2 for exp(tA).

In particular, since exp(tA)ξ2 = e−tξ2 for each t ≥ 0, we have

lim
t→∞

exp(tA)ξ2 = lim
t→∞

e−tξ2 = 0.

Similarly we would get

lim
t→−∞

exp(tA)ξ1 = lim
t→−∞

e3tξ1 = 0.

The point of all of this is that we can compute these limits by means of the Spectral
Mapping Theorem without explicitly computing exp(tA).



12.7.2 Uniqueness of the Spectral Decomposition

We now show that uniqueness of the spectral decomposition of a linear operator. We do
this by supposing there is a collection of projections and nilpotents with the properties
by which they form a spectral decomposition for a given linear operator, and then shown
that the collection of projections and nilpotents are indeed the spectral projections and
eigennilpotents of that linear operator. We make use of Lemma 12.6.7, Remark 12.6.8,
Theorem 12.6.9, and Remark 12.6.10 wherein we noted that the proofs of Lemma 12.6.7
and Theorem 12.6.9 only depended on a collection of projections and nilpotents satisfying
certain properties.

Theorem 12.7.5. For A ∈ Mn(C), if for each λ ∈ σ(A) there is a projection Qλ ∈
Mn(C) and a nilpotent Cλ ∈Mn(C) satisfying

(i) QλQµ = 0 for all µ ∈ σ(A) with λ 6= µ,

(ii) QλCλ = CλQλ = Cλ,

(iii) QµCλ = CλQµ = 0 for all µ ∈ σ(A) with µ 6= λ,

(iv)
∑

λ∈σ(A) Qλ = I, and

(v) A =
∑

λ∈σ(A)

(
λQλ + Cλ

)
then for each λ ∈ σ(A) the projection Qλ is the eigenprojection Pλ associated to A and
the nilpotent Cλ is the eigennipotent Dλ associated to A.

Proof. For every µ ∈ σ(A) we have by item (v), the “spectral decomposition” of A, and
items (i), (ii), and (iii) that

AQµ =

 ∑
λ∈σ(A)

(
λQλ + Cλ

)Qµ

=
∑

λ∈σ(A)

(
λQλQµ + CλQµ

)
= µQ2

µ + CµQµ

= µQµ + Cµ

This implies that
Cµ = (A− µI)Qµ.

Since Dµ = (A − µI)Pµ by Lemma 12.6.1, it suffices to show that Pµ = Qµ for all
µ ∈ σ(A).

Using again item (v), the “spectral decomposition” and items (i), (ii), and (iii) we obtain

QµA = Qµ

∑
λ∈σ(A)

(
λQλ + Cλ) = λQµ + Cµ.

This is the situation we have in the proof of Lemma 12.6.7, and so we obtain the conclu-
sion of Lemma 12.6.7, namely that if (µI − A)y ∈ R(Qµ) then y ∈ R(Qµ).



Now we can adapt the proof of Theorem 12.6.9 to show that Eµ = R(Qµ), and this holds
for every µ ∈ σ(A).

For v ∈ Cn and λ ∈ σ(A) we have Qλv ∈ Eλ = R(Pλ).

For µ ∈ σ(A) \ {λ} we have PµPλ = 0 so that PµQλv = 0 since Qλv ∈ R(Pλ).

Since R(Qµ) = Eµ and Pµ is a projection with the same range as Qµ we have that
PµQµv = Qµv for every v ∈ Cn by Lemma 12.1.3.

Using item (iv), the completeness of the projections Qλ, λ ∈ σ(A), we have for a fixed
µ ∈ σ(A) that

Pµv = PµIv = Pµ
∑

λ∈σ(A)

Qλv =
∑

λ∈σ(A)

PµQλv = PµQµv = Qµv.

This implies that Pµ = Qµ. �

Theorem 12.7.6 (Mapping the Spectral Decomposition). Let A ∈Mn(C) and
f be holomorphic on a simply connected open set U containing σ(A). If for each λ ∈ σ(A)
we have the Taylor series

f(z) = f(λ) +
∞∑
k=1

an,λ(z − λ)k,

then

f(A) =
∑

λ∈σ(A)

(
f(λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

)
is the spectral decomposition of f(A), i.e., for each ν ∈ σ(f(A)) the eigenprojection for
f(A) is given by ∑

µ∈σ(A),f(µ)=ν

Pµ,

and the corresponding eigennilpotent Dν is given by

∑
µ∈σ(A),f(µ)=ν

mµ−1∑
k=1

ak,µD
k
µ.

Sketch of the Proof. By the Spectral Mapping Theorem, the spectrum of f(A) is f(σ(A)).

Corollary 12.6.14 gives a spectral decomposition

f(A) =
∑

λ∈σ(A)

(
f(λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

)
.

Forming the projections and the nilpotents above one then shows that these satisfy the
requirements of Theorem 12.7.5.

Hence these are the unique eigenprojections and eigennilpotents of f(A). �



Example (in lieu of 12.7.7). Find the eigenprojections and eigennilpotents of the
square of

A =


1 1 0 0 0
0 1 0 0 1
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 2


using the formulas in Theorem 12.7.6.

From the partial fraction decomposition of the entries of the resolvent RA(z) we obtain

P1 =


1 0 0 0 −1
0 1 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , D1 =


0 1 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

P−1 =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 −1/9
0 0 0 1 −1/3
0 0 0 0 0

 , D−1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 −1/3
0 0 0 0 0
0 0 0 0 0

 ,

P2 =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1/9
0 0 0 0 1/3
0 0 0 0 1

 .
The spectrum of A is σ(A) = {1,−1, 2} and the spectral decomposition is

A = P1 +D1 − P−1 +D−1 + 2P2.

Since f(z) = z2 is entire, we have by the Spectral Mapping Theorem that

σ(f(A)) = f(σ(A)) = {12, (−1)2, 22} = {1, 4}.

The eigenprojection for f(A) corresponding to ν = 1 ∈ σ(f(A)) is

∑
µ∈σ(A),f(µ)=1

Pµ = P1 + P−1 =


1 0 0 0 −1
0 1 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+


0 0 0 0 0
0 0 0 0 0
0 0 1 0 −1/9
0 0 0 1 −1/3
0 0 0 0 0



=


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1/9
0 0 0 1 −1/3
0 0 0 0 0

 .



The eigenprojection for f(A) corresponding to ν = 4 ∈ σ(f(A)) is P2.

To get the eigennilpotent for f(A) corresponding to ν = 1 we compute the Taylor series
expansions of f(z) = z2 about z = 1 and z = −1:

z2 = (1 + z − 1)2 = 1 + 2(z − 1) + (z − 1)2,

z2 = (−1 + z + 1)2 = 1− 2(z + 1) + (z + 1)2.

Here we have a1,1 = 2 and a1,−1 = −2.

The eigennilpotent for f(A) corresponding to ν = 1 is

∑
µ∈σ(A),f(µ)=1

mµ−1∑
k=1

ak,µD
k
µ = 2D1 − 2D−1

=


0 2 0 0 −2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−


0 0 0 0 0
0 0 0 0 0
0 0 0 2 −2/3
0 0 0 0 0
0 0 0 0 0



=


0 2 0 0 −2
0 0 0 0 0
0 0 0 −2 2/3
0 0 0 0 0
0 0 0 0 0

 .
We can verify all of the eigenprojections and eigennilpotents for f(A) by directly squaring
the spectral decomposition of A:

A2 = (P1 +D1 − P−1 +D−1 + 2P2)(P1 +D1 − P−1 +D−1 + 2P2)

= P1 + 2D1 + P−1 − 2D−1 + 4P2

= P1 + P−1 + 2D1 − 2D−1 + 4P2.

12.7.3 The Power Method

The power method is algorithm to find an eigenvector for certain type of linear operator
on a finite dimensional vector space. The linear operator A must have a dominant
semisimple eigenvalue λ ∈ σ(A) which means that |λ| > |µ| for all µ ∈ σ(A) \ {λ} (λ is
the dominant eigenvalue) and that the geometric multiplicity of λ is equal to its algebraic
multiplicity (λ is a semisimple eigenvalue).

We state the power method when the dominant eigenvalue is one. It is HW (Exercise
12.34) to extend the following result when the dominant eigenvalue is something other
than one.

Theorem 12.7.8. For A ∈Mn(C), suppose that 1 ∈ σ(A) is semisimple and dominant.
If v ∈ Cn satisfies P1v 6= 0, then for any norm ‖ · ‖ on Cn there holds

lim
k→∞
‖Akv − P1v‖ = 0.



See the book for the proof.

Remark. The power method consist in making a good initial guess v for an eigenvector
corresponding to the dominant semisimple eigenvalue 1. The “good” part of the initial
guess is that P1v 6= 0, because P1v ∈ E1 \ {0} is an eigenvector. Although v is not neces-
sarily an eigenvector, its iterates Akv converge in any matrix norm to the eigenvector P1v
and the rate of convergence is determined by the dominance of the dominant semisimple
eigenvalue.

Example (in lieu of 12.7.9). The linear operator

A =

1/4 3/4 0
0 1 0
0 0 1/4


is semisimple with spectrum σ(A) = {1, 1/4} where 1/4 has algebraic multiplicity 2.

This means that eigenvalue 1 is semisimple and dominant.

To find an eigenvector corresponding to eigenvalue 1 by the power method we start with

the guess v =
[
1 1 1

]T
.

Then

Av =

 1
1

1/4

 , A2v =

 1
1

1/16

 , A3v =

 1
1

1/64

 , . . . , Akv =

 1
1

1/4k

→
1

1
0

 .
Theorem 12.7.8 says this limit is an eigenvector of A corresponding to the eigenvalue 1
and that it is the image of the eigenprojection of the initial guess.

From the partial fraction decomposition of the resolvent RA(z) we have

P1 =

0 1 0
0 1 0
0 0 0

 and P1/4 =

1 −1 0
0 0 0
0 0 1

 .
We verify the spectral decomposition A = P1 + (1/4)P1/4.

The limit of Akv is indeed

P1v =

0 1 0
0 1 0
0 0 0

1
1
1

 =

1
1
0

 .


