Math 346 Lecture #39
12.9 The Drazin Inverse

Construction of pseudo-inverses are consequences of decompositions of noninvertible lin-
ear operators. The Moore-Penrose inverse of a noninvertible A € M, (C) is

AT =V 2Uf

that derives from the compact form A = U; 3,V of an SVD for A. Recall that the
columns of V; form a orthonormal basis for Z(A™) and that the columns of U; form an
orthonormal basis for Z(A). The Moore-Penrose inverse A' satisfies

AAT = Projg 4y and ATA = Projsp(any-

These say that AAT and ATA are geometrically the nearest possible approximations to
identity operator I. Another approach to constructing a pseudo-inverse of a noninvertible
linear operator uses its spectral decomposition, and this leads to the Drazin inverse, whose
properties are more spectral than geometric.

12.9.1 Definition and Spectral Decomposition

Definition 12.9.1. Suppose 4 € M,,(C) is nonzero, noninvertible, and
A=Y (AP\+D,)
Aeo(A)
is its spectral decomposition, i.e., 0 € o(A) so that By # 0.
Set P, =1 —F,.
Then P, is the complementary projection (see Example 12.1.2) for which

N (P) =% — P.) =Z(F)

by Lemma 12.1.3, i.e., the kernel of P, is the generalized eigenspace Z(FP,) = & for the
eigenvalue 0 of A.

The complementary projection P, also satisfies
C'= AN (P,)®ZP,)=%(P) ®Z(P.)

by Theorem 12.1.4.

The subspaces Z(Fy) and Z(P.) are both A-invariant because Py and P, both commute
with A, and thus the direct sum decomposition Z(Fy) & Z(FP.) is A-invariant.

Since I = Py + P, we have the Wedderburn Decomposition
A=Al =APy+ P.) = APy + AP, = (A+01)Py + AP, = Dy + AP,

where we have used Dy = (A — AI)P) for A = 0 from Lemma 12.6.1.

Definition 12.9.2. Continuing with the notation established above, let C' be the re-
striction of A to the A-invariant nontrivial proper subspace Z(P.).



The operator C' has no zero eigenvalue. [If there is x € Z(P,) such that Ax = 0 then
X € & = #(P,), which implies since C" = Z(Fy) ® #(P,) that x = 0, whence that C

has no zero eigenvalue.]
Thus the operator C is injective (having trivial kernel), and hence invertible.

The Drazin inverse of nonzero, noninvertible A € M, (C") is the linear operator A” from
C" to Z(P,) defined by
AP =C7'P,.

Alternatively, by uniquely writing x = xo + x, € Z(P) ® Z(P,) we can also define
APx = 07 x,.

Because C' is the restriction of A to Z(P,), we have that AAPx = AC™'P,x = P.x,
which is to say that
AAP =P,

On the other hand, since A and P, commute, we have that APAx = C7'P,Ax =
C~'AP,x = P.x which is to say that
APA=P..

This establishes part (i) of Proposition 12.9.9, that AAP = AP A, without having to
represent A in a block diagonal manner as the book does, and it gives a means to verify
a computed AP by checking if AAP and AP A agree and equal P, = I — PF,.

Remark 12.9.3. When A is invertible, then P, = I and C' = A so that A? = C~'oP, =
A™'. When A =0 then Py = I so that P, = I — Py = 0, whence AP = 0.

Remark 12.9.4. Because C" = Z(P,) ® #(P,) there exists an invertible S € M, (C)

such that
e |M 0
A=35 { 0 N} 5

where (without the book providing justification) we have

_o1]00 D_71M710
}S, Dy=S5 [0 N}S’ and A” = S [O O}S.

M 0

_ g1

You have HW (Exercise 12.43) using these formulas and the Wedderburn decomposition
to compute AP for the matrix in Example 12.9.6.

Theorem 12.9.5. For A € M,,(C) with spectral decomposition

A= )" (AP\+Dy)

Ao (A)

the Drazin inverse of A has the spectral decomposition

Py N (—1)1D;
D A A
A=y (7 + > e

A€o (A)\{0} =1



where m, are the algebraic multiplicities of the nonzero eigenvalues A € o(A). [The
formula in the book for AP is missing the power £ on the eigennipotent D).]

See book for the proof.

Remark. Two additional properties of the Drazin inverse are stated in Proposition
12.9.9: (ii) if ind(A) = k, then AM1AD = AF and (iii) APAAP = AP. Property (ii)
implies that AT AP = A™ for all m > ind(A) by induction.

Example. Compute and compare the Moore-Penrose inverse A" and Drazin inverse A”
for the nonzero, noninvertible

A:

S O N
S N W
o O O

From the compact SVD

4

2/vV5 —1/v/5
:

1/v5 —2/v5"
A=UsiV = [1/V5 2/V5 ]
0 0

2/V/5  1/V/5
0 0

i)

we compute the Moore-Penrose inverse

AT =Vio'oy

(1/V5 —2/V5] 1y gt [2/VE —1/V5 "
= [2/vV5 1/V/5 {0 1] 1/vV5 2/vV/5
|0 0 0 0
[1/2 —3/4 0]
=10 1/2 0
0 0 0]
Here -~
100
AAT =10 1 0| = ATA
000

as is expected since Z(A) and Z(AHN) are the same (the columns of U; and V; span the
same subspace).

The from the partial fraction decomposition of the resolvent

1 100 1 0 30 1 000
Ra(z) = 5 0 1 0| + P 0 0 0 + 0 000
=210 00 =2 000 %0 01
we identity the eigenprojections and eigennilpotents,
100 0 30 0 00
P=101 0, Dy=10 0 0], Fb=10 0 0],
000 000 0 01



and hence the spectral decomposition
A =2P,+ Dy + 0F%.

By Theorem 12.9.5 the Drazin Inverse of A is

| ) 1/2 =3/4 0
AP = g gzDa=| 0 1/2 0
0O 0 0

The Drazin inverse agrees with the Moore-Penrose inverse, and we have APA = P, =
AAP where P, = I — P,.

With ind(A) = 1 we can verify A2AP = A, i.e., the pseudo-inverseness of A:

4 12 0] [1/2 =3/4 0 2 30
A?AP =10 4 0l |0 1/2 0|=1]0 2 0| =A.
00 0[]0 0 o0 000

We also verify AP AAP = AP by direct computation

1/2 —3/4 0] [2 3 0] [1/2 —3/4 0 1/2 —3/4 0
0 1/2 0|0 2 0 0O 1/2 0l=|0 1/2 0
0 0O 0[]0 0O 0 0 0 0 0 0
or more symbolically by using AA” = P, to get
1/2 =3/4 0] {1 0 O 1/2 =3/4 0
APAAP =10 1/2 0[]0 1 0|=]0 1/2 0f=A".
0 0O 0[]0 0 O 0 0 0

Example. Compute and compare the Moore-Penrose and Drazin inverses of
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A=10 0 1 0 O
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From the compact SVD
A=U2

H
1000 1 000
0100(2)?880100
2001000100010
000100010000
00 00 0001
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we compute the Moore-Penrose inverse

Here the projections
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and

}

are not the same because the Z(A) and Z(AM) are not the same (the columns of A and

AH gpan different subspaces).

100 00
01000
00100
000O0O0
0 00O0T1

= AtA =
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Using partial fractions we have for the resolvent that
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The eigenprojections of A are
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and the eigennilpotent of A is

The Wedderburn decomposition of A is
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By Theorem 12.9.5, the Drazin Inverse of A is

1/2 0 0 0 0
0 1000
PR+Pi=|0 010 0.
0 0000
0 0000

1
2
The Drazin Inverse is not the same as the Moore-Penrose inverse.

AP =

As a verification of AP we check
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that they both agree and are equal P, = I — F.



2 we verify that A3AP = A% but that A2AP # A:

With ind(A)
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