Math 346 Lecture \#39

12.9 The Drazin Inverse

Construction of pseudo-inverses are consequences of decompositions of noninvertible linear operators. The Moore-Penrose inverse of a noninvertible $A \in M_{n}(\mathbb{C})$ is

$$
A^{\dagger}=V_{1} \Sigma U_{1}^{\mathrm{H}}
$$

that derives from the compact form $A=U_{1} \Sigma_{1} V_{1}^{\mathrm{H}}$ of an SVD for A. Recall that the columns of V_{1} form a orthonormal basis for $\mathscr{R}\left(A^{\mathrm{H}}\right)$ and that the columns of U_{1} form an orthonormal basis for $\mathscr{R}(A)$. The Moore-Penrose inverse A^{\dagger} satisfies

$$
A A^{\dagger}=\operatorname{proj}_{\mathscr{R}(A)} \text { and } A^{\dagger} A=\operatorname{proj}_{\mathscr{R}\left(A^{\mathrm{H}}\right)}
$$

These say that $A A^{\dagger}$ and $A^{\dagger} A$ are geometrically the nearest possible approximations to identity operator I. Another approach to constructing a pseudo-inverse of a noninvertible linear operator uses its spectral decomposition, and this leads to the Drazin inverse, whose properties are more spectral than geometric.

12.9.1 Definition and Spectral Decomposition

Definition 12.9.1. Suppose $A \in M_{n}(\mathbb{C})$ is nonzero, noninvertible, and

$$
A=\sum_{\lambda \in \sigma(A)}\left(\lambda P_{\lambda}+D_{\lambda}\right)
$$

is its spectral decomposition, i.e., $0 \in \sigma(A)$ so that $P_{0} \neq 0$.
Set $P_{*}=I-P_{0}$.
Then P_{*} is the complementary projection (see Example 12.1.2) for which

$$
\mathscr{N}\left(P_{*}\right)=\mathscr{R}\left(I-P_{*}\right)=\mathscr{R}\left(P_{0}\right)
$$

by Lemma 12.1 .3 , i.e., the kernel of P_{*} is the generalized eigenspace $\mathscr{R}\left(P_{0}\right)=\mathscr{E}_{0}$ for the eigenvalue 0 of A.

The complementary projection P_{*} also satisfies

$$
\mathbb{C}^{n}=\mathscr{N}\left(P_{*}\right) \oplus \mathscr{R}\left(P_{*}\right)=\mathscr{R}\left(P_{0}\right) \oplus \mathscr{R}\left(P_{*}\right)
$$

by Theorem 12.1.4.
The subspaces $\mathscr{R}\left(P_{0}\right)$ and $\mathscr{R}\left(P_{*}\right)$ are both A-invariant because P_{0} and P_{*} both commute with A, and thus the direct sum decomposition $\mathscr{R}\left(P_{0}\right) \oplus \mathscr{R}\left(P_{*}\right)$ is A-invariant.
Since $I=P_{0}+P_{*}$ we have the Wedderburn Decomposition

$$
A=A I=A\left(P_{0}+P_{*}\right)=A P_{0}+A P_{*}=(A+0 I) P_{0}+A P_{*}=D_{0}+A P_{*}
$$

where we have used $D_{\lambda}=(A-\lambda I) P_{\lambda}$ for $\lambda=0$ from Lemma 12.6.1.
Definition 12.9.2. Continuing with the notation established above, let C be the restriction of A to the A-invariant nontrivial proper subspace $\mathscr{R}\left(P_{*}\right)$.

The operator C has no zero eigenvalue. [If there is $\mathrm{x} \in \mathscr{R}\left(P_{*}\right)$ such that $A \mathrm{x}=0$ then $\mathrm{x} \in \mathscr{E}_{0}=\mathscr{R}\left(P_{0}\right)$, which implies since $\mathbb{C}^{n}=\mathscr{R}\left(P_{0}\right) \oplus \mathscr{R}\left(P_{*}\right)$ that $\mathrm{x}=0$, whence that C has no zero eigenvalue.]
Thus the operator C is injective (having trivial kernel), and hence invertible.
The Drazin inverse of nonzero, noninvertible $A \in M_{n}\left(\mathbb{C}^{n}\right)$ is the linear operator A^{D} from \mathbb{C}^{n} to $\mathscr{R}\left(P_{*}\right)$ defined by

$$
A^{D}=C^{-1} P_{*}
$$

Alternatively, by uniquely writing $\mathrm{x}=\mathrm{x}_{0}+\mathrm{x}_{*} \in \mathscr{R}\left(P_{0}\right) \oplus \mathscr{R}\left(P_{*}\right)$ we can also define

$$
A^{D} \mathrm{x}=C^{-1} \mathrm{x}_{*} .
$$

Because C is the restriction of A to $\mathscr{R}\left(P_{*}\right)$, we have that $A A^{D} \mathrm{x}=A C^{-1} P_{*} \mathrm{x}=P_{*} \mathrm{x}$, which is to say that

$$
A A^{D}=P_{*}
$$

On the other hand, since A and P_{*} commute, we have that $A^{D} A \mathrm{x}=C^{-1} P_{*} A \mathrm{x}=$ $C^{-1} A P_{*} \mathrm{x}=P_{*} \mathrm{x}$ which is to say that

$$
A^{D} A=P_{*}
$$

This establishes part (i) of Proposition 12.9.9, that $A A^{D}=A^{D} A$, without having to represent A in a block diagonal manner as the book does, and it gives a means to verify a computed A^{D} by checking if $A A^{D}$ and $A^{D} A$ agree and equal $P_{*}=I-P_{0}$.
Remark 12.9.3. When A is invertible, then $P_{*}=I$ and $C=A$ so that $A^{D}=C^{-1} \circ P_{*}=$ A^{-1}. When $A=0$ then $P_{0}=I$ so that $P_{*}=I-P_{0}=0$, whence $A^{D}=0$.
Remark 12.9.4. Because $\mathbb{C}^{n}=\mathscr{R}\left(P_{*}\right) \oplus \mathscr{R}\left(P_{0}\right)$ there exists an invertible $S \in M_{n}(\mathbb{C})$ such that

$$
A=S^{-1}\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right] S
$$

where (without the book providing justification) we have

$$
A P_{*}=S^{-1}\left[\begin{array}{cc}
M & 0 \\
0 & 0
\end{array}\right] S, D_{0}=S^{-1}\left[\begin{array}{cc}
0 & 0 \\
0 & N
\end{array}\right] S, \text { and } A^{D}=S^{-1}\left[\begin{array}{cc}
M^{-1} & 0 \\
0 & 0
\end{array}\right] S
$$

You have HW (Exercise 12.43) using these formulas and the Wedderburn decomposition to compute A^{D} for the matrix in Example 12.9.6.
Theorem 12.9.5. For $A \in M_{n}(\mathbb{C})$ with spectral decomposition

$$
A=\sum_{\lambda \in \sigma(A)}\left(\lambda P_{\lambda}+D_{\lambda}\right)
$$

the Drazin inverse of A has the spectral decomposition

$$
A^{D}=\sum_{\lambda \in \sigma(A) \backslash\{0\}}\left(\frac{P_{\lambda}}{\lambda}+\sum_{\ell=1}^{m_{\lambda}-1} \frac{(-1)^{\ell} D_{\lambda}^{\ell}}{\lambda^{\ell+1}}\right)
$$

where m_{λ} are the algebraic multiplicities of the nonzero eigenvalues $\lambda \in \sigma(A)$. [The formula in the book for A^{D} is missing the power ℓ on the eigennipotent D_{λ}.]
See book for the proof.
Remark. Two additional properties of the Drazin inverse are stated in Proposition 12.9.9: (ii) if $\operatorname{ind}(A)=k$, then $A^{k+1} A^{D}=A^{k}$ and (iii) $A^{D} A A^{D}=A^{D}$. Property (ii) implies that $A^{m+1} A^{D}=A^{m}$ for all $m \geq \operatorname{ind}(A)$ by induction.
Example. Compute and compare the Moore-Penrose inverse A^{\dagger} and Drazin inverse A^{D} for the nonzero, noninvertible

$$
A=\left[\begin{array}{lll}
2 & 3 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

From the compact SVD

$$
A=\mathrm{U}_{1} \Sigma_{1} V_{1}^{\mathrm{T}}=\left[\begin{array}{cc}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{5} & -2 / \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5} \\
0 & 0
\end{array}\right]^{\mathrm{H}}
$$

we compute the Moore-Penrose inverse

$$
\begin{aligned}
A^{\dagger} & =V_{1} \Sigma_{1}^{-1} U_{1}^{\mathrm{H}} \\
& =\left[\begin{array}{cc}
1 / \sqrt{5} & -2 / \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5} \\
0 & 0
\end{array}\right]^{\mathrm{H}} \\
& =\left[\begin{array}{ccc}
1 / 2 & -3 / 4 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Here

$$
A A^{\dagger}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=A^{\dagger} A
$$

as is expected since $\mathscr{R}(A)$ and $\mathscr{R}\left(A^{\mathrm{H}}\right)$ are the same (the columns of U_{1} and V_{1} span the same subspace).

The from the partial fraction decomposition of the resolvent

$$
R_{A}(z)=\frac{1}{z-2}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{(z-2)^{3}}\left[\begin{array}{lll}
0 & 3 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{z-0}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

we identity the eigenprojections and eigennilpotents,

$$
P_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], D_{2}=\left[\begin{array}{lll}
0 & 3 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], P_{0}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

and hence the spectral decomposition

$$
A=2 P_{2}+D_{2}+0 P_{0}
$$

By Theorem 12.9.5 the Drazin Inverse of A is

$$
A^{D}=\frac{1}{2} P_{2}-\frac{1}{2^{2}} D_{2}=\left[\begin{array}{ccc}
1 / 2 & -3 / 4 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

The Drazin inverse agrees with the Moore-Penrose inverse, and we have $A^{D} A=P_{*}=$ $A A^{D}$ where $P_{*}=I-P_{0}$.
With $\operatorname{ind}(A)=1$ we can verify $A^{2} A^{D}=A$, i.e., the pseudo-inverseness of A^{D} :

$$
A^{2} A^{D}=\left[\begin{array}{ccc}
4 & 12 & 0 \\
0 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & -3 / 4 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]=A .
$$

We also verify $A^{D} A A^{D}=A^{D}$ by direct computation

$$
\left[\begin{array}{ccc}
1 / 2 & -3 / 4 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & -3 / 4 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & -3 / 4 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

or more symbolically by using $A A^{D}=P_{*}$ to get

$$
A^{D} A A^{D}=\left[\begin{array}{ccc}
1 / 2 & -3 / 4 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & -3 / 4 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]=A^{D}
$$

Example. Compute and compare the Moore-Penrose and Drazin inverses of

$$
A=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From the compact SVD

$$
\begin{aligned}
A & =U_{1} \Sigma_{1} V_{1}^{\mathrm{H}} \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{\mathrm{H}}
\end{aligned}
$$

we compute the Moore-Penrose inverse

$$
\begin{aligned}
A^{\dagger} & =V_{1} \Sigma^{-1} U_{1}^{\mathrm{H}} \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]^{\mathrm{H}} \\
& =\left[\begin{array}{ccccc}
1 / 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Here the projections

$$
\operatorname{proj}_{\mathscr{R}(A)}=A A^{\dagger}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
\operatorname{proj}_{\mathscr{R}\left(A^{\mathrm{H}}\right)}=A^{\dagger} A=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

are not the same because the $\mathscr{R}(A)$ and $\mathscr{R}\left(A^{\mathrm{H}}\right)$ are not the same (the columns of A and A^{H} span different subspaces).
Using partial fractions we have for the resolvent that

$$
\begin{aligned}
R_{A}(z)= & \frac{1}{z-2}\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]+\frac{1}{z-1}\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& +\frac{1}{z-0}\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]+\frac{1}{(z-0)^{2}}\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

The eigenprojections of A are

$$
P_{2}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], P_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], P_{0}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

and the eigennilpotent of A is

$$
D_{0}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The Wedderburn decomposition of A is

$$
A=D_{0}+A P_{*}=D_{0}+A\left(I-P_{0}\right)=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

By Theorem 12.9.5, the Drazin Inverse of A is

$$
A^{D}=\frac{1}{2} P_{2}+P_{1}=\left[\begin{array}{ccccc}
1 / 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The Drazin Inverse is not the same as the Moore-Penrose inverse.
As a verification of A^{D} we check

$$
A^{D} A=\left[\begin{array}{ccccc}
1 / 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
A A^{D}=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccccc}
1 / 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

that they both agree and are equal $P_{*}=I-P_{0}$.

With $\operatorname{ind}(A)=2$ we verify that $A^{3} A^{D}=A^{2}$ but that $A^{2} A^{D} \neq A$:

$$
A^{3} A^{D}=\left[\begin{array}{lllll}
8 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccccc}
1 / 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
4 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=A^{2},
$$

but

$$
A^{2} A^{D}=\left[\begin{array}{lllll}
4 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccccc}
1 / 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \neq\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=A .
$$

