
Math 346 Lecture #39
12.9 The Drazin Inverse

Construction of pseudo-inverses are consequences of decompositions of noninvertible lin-
ear operators. The Moore-Penrose inverse of a noninvertible A ∈Mn(C) is

A† = V1ΣU
H
1

that derives from the compact form A = U1Σ1V
H
1 of an SVD for A. Recall that the

columns of V1 form a orthonormal basis for R(AH) and that the columns of U1 form an
orthonormal basis for R(A). The Moore-Penrose inverse A† satisfies

AA† = projR(A) and A†A = projR(AH).

These say that AA† and A†A are geometrically the nearest possible approximations to
identity operator I. Another approach to constructing a pseudo-inverse of a noninvertible
linear operator uses its spectral decomposition, and this leads to the Drazin inverse, whose
properties are more spectral than geometric.

12.9.1 Definition and Spectral Decomposition

Definition 12.9.1. Suppose A ∈Mn(C) is nonzero, noninvertible, and

A =
∑

λ∈σ(A)

(
λPλ +Dλ

)
is its spectral decomposition, i.e., 0 ∈ σ(A) so that P0 6= 0.

Set P∗ = I − P0.

Then P∗ is the complementary projection (see Example 12.1.2) for which

N (P∗) = R(I − P∗) = R(P0)

by Lemma 12.1.3, i.e., the kernel of P∗ is the generalized eigenspace R(P0) = E0 for the
eigenvalue 0 of A.

The complementary projection P∗ also satisfies

Cn = N (P∗)⊕R(P∗) = R(P0)⊕R(P∗)

by Theorem 12.1.4.

The subspaces R(P0) and R(P∗) are both A-invariant because P0 and P∗ both commute
with A, and thus the direct sum decomposition R(P0)⊕R(P∗) is A-invariant.

Since I = P0 + P∗ we have the Wedderburn Decomposition

A = AI = A(P0 + P∗) = AP0 + AP∗ = (A+ 0I)P0 + AP∗ = D0 + AP∗,

where we have used Dλ = (A− λI)Pλ for λ = 0 from Lemma 12.6.1.

Definition 12.9.2. Continuing with the notation established above, let C be the re-
striction of A to the A-invariant nontrivial proper subspace R(P∗).



The operator C has no zero eigenvalue. [If there is x ∈ R(P∗) such that Ax = 0 then
x ∈ E0 = R(P0), which implies since Cn = R(P0) ⊕R(P∗) that x = 0, whence that C
has no zero eigenvalue.]

Thus the operator C is injective (having trivial kernel), and hence invertible.

The Drazin inverse of nonzero, noninvertible A ∈Mn(Cn) is the linear operator AD from
Cn to R(P∗) defined by

AD = C−1P∗.

Alternatively, by uniquely writing x = x0 + x∗ ∈ R(P0)⊕R(P∗) we can also define

ADx = C−1x∗.

Because C is the restriction of A to R(P∗), we have that AADx = AC−1P∗x = P∗x,
which is to say that

AAD = P∗.

On the other hand, since A and P∗ commute, we have that ADAx = C−1P∗Ax =
C−1AP∗x = P∗x which is to say that

ADA = P∗.

This establishes part (i) of Proposition 12.9.9, that AAD = ADA, without having to
represent A in a block diagonal manner as the book does, and it gives a means to verify
a computed AD by checking if AAD and ADA agree and equal P∗ = I − P0.

Remark 12.9.3. When A is invertible, then P∗ = I and C = A so that AD = C−1◦P∗ =
A−1. When A = 0 then P0 = I so that P∗ = I − P0 = 0, whence AD = 0.

Remark 12.9.4. Because Cn = R(P∗) ⊕R(P0) there exists an invertible S ∈ Mn(C)
such that

A = S−1
[
M 0
0 N

]
S

where (without the book providing justification) we have

AP∗ = S−1
[
M 0
0 0

]
S, D0 = S−1

[
0 0
0 N

]
S, and AD = S−1

[
M−1 0

0 0

]
S.

You have HW (Exercise 12.43) using these formulas and the Wedderburn decomposition
to compute AD for the matrix in Example 12.9.6.

Theorem 12.9.5. For A ∈Mn(C) with spectral decomposition

A =
∑

λ∈σ(A)

(
λPλ +Dλ

)
the Drazin inverse of A has the spectral decomposition

AD =
∑

λ∈σ(A)\{0}

(
Pλ
λ

+

mλ−1∑
`=1

(−1)`D`
λ

λ`+1

)



where mλ are the algebraic multiplicities of the nonzero eigenvalues λ ∈ σ(A). [The
formula in the book for AD is missing the power ` on the eigennipotent Dλ.]

See book for the proof.

Remark. Two additional properties of the Drazin inverse are stated in Proposition
12.9.9: (ii) if ind(A) = k, then Ak+1AD = Ak and (iii) ADAAD = AD. Property (ii)
implies that Am+1AD = Am for all m ≥ ind(A) by induction.

Example. Compute and compare the Moore-Penrose inverse A† and Drazin inverse AD

for the nonzero, noninvertible

A =

2 3 0
0 2 0
0 0 0

 .
From the compact SVD

A = U1Σ1V
T
1 =

2/
√

5 −1/
√

5

1/
√

5 2/
√

5
0 0

[4 0
0 1

]1/
√

5 −2/
√

5

2/
√

5 1/
√

5
0 0

H

we compute the Moore-Penrose inverse

A† = V1Σ
−1
1 UH

1

=

1/
√

5 −2/
√

5

2/
√

5 1/
√

5
0 0

[4 0
0 1

]−1 2/
√

5 −1/
√

5

1/
√

5 2/
√

5
0 0

H

=

1/2 −3/4 0
0 1/2 0
0 0 0

 .
Here

AA† =

1 0 0
0 1 0
0 0 0

 = A†A

as is expected since R(A) and R(AH) are the same (the columns of U1 and V1 span the
same subspace).

The from the partial fraction decomposition of the resolvent

RA(z) =
1

z − 2

1 0 0
0 1 0
0 0 0

+
1

(z − 2)3

0 3 0
0 0 0
0 0 0

+
1

z − 0

0 0 0
0 0 0
0 0 1


we identity the eigenprojections and eigennilpotents,

P2 =

1 0 0
0 1 0
0 0 0

 , D2 =

0 3 0
0 0 0
0 0 0

 , P0 =

0 0 0
0 0 0
0 0 1

 ,



and hence the spectral decomposition

A = 2P2 +D2 + 0P0.

By Theorem 12.9.5 the Drazin Inverse of A is

AD =
1

2
P2 −

1

22
D2 =

1/2 −3/4 0
0 1/2 0
0 0 0

 .
The Drazin inverse agrees with the Moore-Penrose inverse, and we have ADA = P∗ =
AAD where P∗ = I − P0.

With ind(A) = 1 we can verify A2AD = A, i.e., the pseudo-inverseness of AD:

A2AD =

4 12 0
0 4 0
0 0 0

1/2 −3/4 0
0 1/2 0
0 0 0

 =

2 3 0
0 2 0
0 0 0

 = A.

We also verify ADAAD = AD by direct computation1/2 −3/4 0
0 1/2 0
0 0 0

2 3 0
0 2 0
0 0 0

1/2 −3/4 0
0 1/2 0
0 0 0

 =

1/2 −3/4 0
0 1/2 0
0 0 0


or more symbolically by using AAD = P∗ to get

ADAAD =

1/2 −3/4 0
0 1/2 0
0 0 0

1 0 0
0 1 0
0 0 0

 =

1/2 −3/4 0
0 1/2 0
0 0 0

 = AD.

Example. Compute and compare the Moore-Penrose and Drazin inverses of

A =


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

 .
From the compact SVD

A = U1Σ1V
H
1

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1


H



we compute the Moore-Penrose inverse

A† = V1Σ
−1UH

1

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1




2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


H

=


1/2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0

 .
Here the projections

projR(A) = AA† =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0


and

projR(AH) = A†A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1


are not the same because the R(A) and R(AH) are not the same (the columns of A and
AH span different subspaces).

Using partial fractions we have for the resolvent that

RA(z) =
1

z − 2


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+
1

z − 1


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



+
1

z − 0


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

+
1

(z − 0)2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .



The eigenprojections of A are

P2 =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , P1 =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , P0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 ,
and the eigennilpotent of A is

D0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .
The Wedderburn decomposition of A is

A = D0 + AP∗ = D0 + A(I − P0) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

+


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 .
By Theorem 12.9.5, the Drazin Inverse of A is

AD =
1

2
P2 + P1 =


1/2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 .
The Drazin Inverse is not the same as the Moore-Penrose inverse.

As a verification of AD we check

ADA =


1/2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0




2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0


and

AAD =


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0




1/2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 ,
that they both agree and are equal P∗ = I − P0.



With ind(A) = 2 we verify that A3AD = A2 but that A2AD 6= A:

A3AD =


8 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0




1/2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 =


4 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 = A2,

but

A2AD =


4 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0




1/2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 =


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 6=


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

 = A.


