Math 521 Lecture \#4

§1.1.4: Proof of the Pi Theorem

The Pi Theorem is a means by which we reduce a unit-free physical law $f\left(q_{1}, q_{2}, \ldots, q_{m}\right)=$ 0 to a simpler equivalent physical law $F\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)=0$.

We have already seen how through finding the kernel of the dimension matrix A we define the dimensionless quantities $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ for the simpler physical law.
We have not yet seen how we get F from f.
We illustrate the process of getting F from f when there are $m=4$ dimensioned quantities $q_{1}, q_{2}, q_{3}, q_{4}$, there are $n=2$ fundamental dimensions L_{1} and L_{2}, and the rank of A is $r=2$.

Consider the unit-free physical law $f\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=0$.
The entries of the 2×4 dimension matrix $A=\left(a_{i j}\right)$ are determined by

$$
\left[q_{j}\right]=L_{1}^{a_{1 j}} L_{2}^{a_{2 j}}, j=1,2,3,4
$$

For a dimensionless quantity

$$
\pi=q_{1}^{p_{1}} q_{2}^{p_{1}} q_{3}^{p_{3}} q_{4}^{p_{4}}
$$

the vector $\vec{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)^{T}$ satisfies $A \vec{p}=0$, i.e.,

$$
\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] p_{1}+\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right] p_{2}+\left[\begin{array}{l}
a_{13} \\
a_{23}
\end{array}\right] p_{3}+\left[\begin{array}{l}
a_{14} \\
a_{24}
\end{array}\right] p_{4}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Since the rank of A is 2 , we may, by rearranging the indices on the q_{j}, assume that the first two columns of A are linearly independent.

Then we can write the third and fourth columns of A as linear combinations of the first two columns of A : for constants c_{31}, c_{32}, c_{41}, and c_{42}, we have

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{13} \\
a_{23}
\end{array}\right]=c_{31}\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]+c_{32}\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right],} \\
& {\left[\begin{array}{l}
a_{14} \\
a_{24}
\end{array}\right]=c_{41}\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]+c_{42}\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right] .}
\end{aligned}
$$

The components of \vec{p} then satisfy

$$
\left(p_{1}+c_{31} p_{3}+c_{41} p_{4}\right)\left[\begin{array}{l}
a_{11} \\
a_{12}
\end{array}\right]+\left(p_{2}+c_{32} p_{3}+c_{42} p_{4}\right)\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We have here a linear combination of first two columns of A equal the zero vector.
By linear independence of the first two columns of A, the coefficients in the linear combination must both be zero:

$$
p_{1}+c_{31} p_{3}+c_{41} p_{4}=0, \quad p_{2}+c_{32} p_{3}+c_{42} p_{4}=0
$$

We can solve for p_{1} and p_{2} in terms of p_{3} and p_{4}, giving

$$
\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right]=p_{3}\left[\begin{array}{c}
-c_{31} \\
-c_{32} \\
1 \\
0
\end{array}\right]+p_{4}\left[\begin{array}{c}
-c_{41} \\
-c_{42} \\
0 \\
1
\end{array}\right] .
$$

The two vectors in this linear combination are a basis for the kernel of A, and give us the two dimensionless quantities

$$
\pi_{1}=q_{1}^{-c_{31}} q_{2}^{-c_{32}} q_{3}, \quad \pi_{2}=q_{1}^{-c_{41}} q_{2}^{-c_{42}} q_{4} .
$$

Define a function G by

$$
G\left(q_{1}, q_{2}, \pi_{1}, \pi_{2}\right)=f\left(q_{1}, q_{2}, \pi_{1} q_{1}^{c_{31}} q_{2}^{c_{32}}, \pi_{2} q_{1}^{c_{41}} q_{2}^{c_{42}}\right)
$$

Observe that $G\left(q_{1}, q_{2}, \pi_{1}, \pi_{2}\right)=0$ holds if and only if $f\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=0$, and so we have an equivalent physical law.

Since $f=0$ is unit-free, it follows that $G=0$ is also unit-free.
[The dimensionless quantities π_{j} satisfy $\bar{\pi}_{j}=\pi_{j}$ in all systems of units.]
The final step is the show that $G\left(1,1, \pi_{1}, \pi_{2}\right)=0$ is equivalent to $G\left(q_{1}, q_{2}, \pi_{1}, \pi_{2}\right)=0$, for then we define

$$
F\left(\pi_{1}, \pi_{2}\right)=G\left(1,1, \pi_{1}, \pi_{2}\right)
$$

Because $G\left(q_{1}, q_{2}, \pi_{1}, \pi_{2}\right)=0$ is unit-free, we have

$$
G\left(\bar{q}_{1}, \bar{q}_{2}, \pi_{1}, \pi_{2}\right)=0
$$

for every choice of the conversion factors λ_{1} and λ_{2} in

$$
\bar{q}_{1}=\lambda_{1}^{a_{11}} \lambda_{2}^{a_{21}} q_{1}, \quad \bar{q}_{2}=\lambda_{1}^{a_{21}} \lambda_{2}^{a_{22}} q_{2} .
$$

Is there a choice of λ_{1} and λ_{2} so that $\bar{q}_{1}=1$ and $\bar{q}_{2}=1$?
We are solving

$$
\lambda_{1}^{a_{11}} \lambda_{2}^{a_{12}} q_{1}=1, \quad \lambda_{1}^{a_{21}} \lambda_{2}^{a_{22}} q_{2}=1,
$$

which is equivalent to solving

$$
\begin{aligned}
& a_{11} \ln \lambda_{1}+a_{21} \ln \lambda_{2}=-\ln q_{1}, \\
& a_{21} \ln \lambda_{1}+a_{22} \ln \lambda_{2}=-\ln q_{2} .
\end{aligned}
$$

This linear system has a unique solution $\left(\ln \lambda_{1}, \ln \lambda_{2}\right)$ because the coefficient matrix is invertible.
We there is a choice of λ_{1} and λ_{2}.
Thus $F\left(\pi_{1}, \pi_{2}\right)=0$ is equivalent to $f\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=0$.

Example. Recall the ideal gas law $0=f(p, v, n, r, t)=p v-n r t$ is unit-free.
Here $[p]=M L^{-1} T^{-2},[v]=L^{3},[n]=\mathrm{mol},[r]=M L^{2} T^{-2} \Theta^{-1} \mathrm{~mol}^{-1}$, and $[t]=\Theta$.
The dimension matrix is

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 0 \\
-1 & 3 & 0 & 2 & 0 \\
-2 & 0 & 0 & -2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

To find the kernel of A we row reduce A to get

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So the rank of A is 4 , and the nullity of A is 1 .
The five components of \vec{p} in $A \vec{p}=0$ satisfies

$$
p_{1}=-p_{5}, p_{2}=-p_{5}, p_{3}=p_{5}, p_{4}=p_{5}, p_{5} \text { free }
$$

Thus a basis for the kernel of A is $[-1,-1,1,1,1]^{T}$ (obtained by taking $p_{5}=1$), and the one dimensionless quantity is

$$
\pi_{1}=p^{-1} v^{-1} n r t
$$

We form the function G by

$$
G\left(p, v, n, r, \pi_{1}\right)=f\left(p, v, n, r, \pi_{1} p v n^{-1} r^{-1}\right)=p v-n r\left(\pi_{1} p v n^{-1} r^{-1}\right)=p v\left(1-\pi_{1}\right) .
$$

The function F for the simpler equivalent dimensionless ideal gas law is then given by

$$
F\left(\pi_{1}\right)=G\left(1,1,1,1, \pi_{1}\right)=1-\pi_{1} .
$$

Setting $F\left(\pi_{1}\right)=0$ implies that $\pi_{1}=1$, so that

$$
1=p^{-1} v^{-1} n r t .
$$

But this is nothing more than saying that $p v=n r t$.
Example. Suppose there are at least two (linearly independent) dimensionless quantities $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ in the dimensionless physical law $F\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)=0$.
Then we may assume when $\partial F / \partial \pi_{k} \neq 0$ that π_{k} is a function of the $\pi_{1}, \pi_{2}, \ldots, \pi_{k-1}$ (by the Implicit Function Theorem).
This gives the functional form of the quantity π_{k} or any of the dimensional quantities that determine π_{k}.

