
Math 521 Lecture #7
§1.3.1: Review of Elementary Methods

Recall that an initial value problem (or IVP for short),

u′ = f(t, u), u(t0) = u0,

has a unique solution when f and ∂f/∂u are continuous on an open rectangle containing
the point (t0, u0).

In some cases, the ODE u′ = f(t, u) can be solved, at least implicitly, with an arbitrary
constant whose value is chosen to match the initial condition.

The method used to solve and first-order ODE depends on its type.

Separable First-Order Equations. An ODE u′ = f(t, u) is separable when

f(t, u) = g(t)h(u).

For then we can separate the variables in the ODE to get

du

h(u)
= g(t)dt.

Integration of this gives implicitly defined solutions∫
du

h(u)
=

∫
g(t)dt+ C.

Example. The logistic equation u′ = u(1 − u) is separable, giving implicitly defined
solutions by ∫

du

u(1− u)
= t+ C.

By partial fractions,
1

u(1− u)
=

1

u
− 1

1− u
,

and so ∫
du

u(1− u)
= ln |u|+ ln |1− u| = ln

∣∣∣∣ u

1− u

∣∣∣∣ .
The implicitly defined solutions of the ODE are

ln

∣∣∣∣ u

1− u

∣∣∣∣ = t+ C ⇒ u

1− u
= (±eC)et.

Can we get explicitly defined solutions from this?

First-Order Linear Equations. A first-order ODE u′ = f(t, y) if is can be written
in the form

u′ + p(t)u = g(t).



Multiplying a linear ODE through by the integration factor

exp

{∫
p(t)dt

}
turns the left-hand side into a total derivative (via the product rule),

d

dt

(
u exp

{∫
p(t)dt

})
= q(t) exp

{∫
p(t)dt

}
.

Integration and solving for u explicitly gives

u = exp

{
−
∫
p(t)dt

}(∫
q(t) exp

{∫
p(t)dt

}
+ C

)
.

Example. The ODE u′ − 2tu = 1 is linear, and so its general solution is

u = exp

{∫
2tdt

}(∫
exp

{
− 2tdt

}
+ C

)
= et

2

(∫
e−t

2

dt+ C

)
.

If we were to impose an initial condition u(a) = b, then the solution of the IVP is

u = exp
(
t2 − a2

)(∫ t

a

es
2

ds+ b

)
.

Second-Order Linear Equations. A second-order equation F (t, u, u′, u′′) = 0 is
linear if it can be written in the form

u′′ + p(t)u′ + q(t)u = f(t).

Solutions of the homogeneous equation (i.e., f(t) = 0) form a two dimensional vector
space.

Two linearly independent solutions of the homogeneous equation (i.e., f(t) = 0) form a
basis of this two dimensional vector space, and are called a fundamental set of solutions.

Recall that two homogeneous solutions are linearly independent if and only if they have
a nonzero Wronskian

W (t) = u1(t)u
′
2(t)− u′1(t)u2(t).

Once a fundamental set of homogeneous solutions u1, u2 is obtained, a particular solution
of the non-homogeneous equation is given by the variation of parameters formula,

uP (t) = −u1(t)
∫
u2(t)f(t)

W (t)
dt+ u2(t)

∫
u1(t)f(t)

W (t)
dt.

The general solution of the non-homogeneous equation is then

u = c1u1(t) + c2u2(t) + uP (t).



When the functions p(t) and q(t) are real analytic, we can find two linearly independent
power series solution of the homogeneous equation.

In simplest case, when we have au′′+bu′+cu = 0, the guess u = ert gives the characteristic
equation

ar2 + br + c = 0,

whose roots determine the form of the fundamental set.

When the roots r1 and r2 are real and distinct, two solutions are u1 = er1t and u2 = er2t.

When the roots r1 and r2 are real and repeated, two solutions are u1 = er1t and u2 = ter1t.

When the roots λ ± iµ are complex conjugate, two real valued solutions are u1 =
eλt cos(µt) and u2 = eλt sin(µt).

Another case when a fundamental set of solutions can be obtained is when we have
t2u′′ + αtu′ + βu = 0, known as the Cauchy-Euler equation.

The guess u = tr results in the indicial equation r2 + (α− 1)r + β = 0.

It is left to you to formulate the fundamental set of solutions in the three cases of the
roots.

Nonlinear Second-Order Equations. Some nonlinear second-order equations can
be solved by reduction to a first-order equation.

Consider the equation mx′′ = F (t, x, x′) for position x and mass m.

If F does not depend on x, then the substitution y = x′ reduces the second-order equation
to the first-order equation y′ = F (t, y).

Once this is solved for y, then solving the separable first-order equation y = x′ gives x.

If, instead, F does not depend on t, then setting y = x′ and using the chain rule to get

x′′ =
d

dt

dx′

dt
=
dy

dt
=
dy

dx

dx

dt
= y(dy/dx),

gives

my
dy

dx
= F (x, y).

Once this is solved for y as a function of x, then solving the separable first-order equation
y = x′ gives x.

Another case is when F depends only on x, and hence is conservative, i.e., there is a
potential function V (x) such that

F (x) = −dV
dx

.

The substitution y = x′, x′′ = y(dy/dx) then gives the separable first-order equation

my
dy

dx
= F (x).



Integration immediately gives
my2

2
+ V (x) = E

where the constant of integration E is the total energy in the system (kinetic energy plus
potential energy).


