Math 521 Lecture \#7
 §1.3.1: Review of Elementary Methods

Recall that an initial value problem (or IVP for short),

$$
u^{\prime}=f(t, u), u\left(t_{0}\right)=u_{0}
$$

has a unique solution when f and $\partial f / \partial u$ are continuous on an open rectangle containing the point $\left(t_{0}, u_{0}\right)$.
In some cases, the ODE $u^{\prime}=f(t, u)$ can be solved, at least implicitly, with an arbitrary constant whose value is chosen to match the initial condition.

The method used to solve and first-order ODE depends on its type.
Separable First-Order Equations. An ODE $u^{\prime}=f(t, u)$ is separable when

$$
f(t, u)=g(t) h(u)
$$

For then we can separate the variables in the ODE to get

$$
\frac{d u}{h(u)}=g(t) d t
$$

Integration of this gives implicitly defined solutions

$$
\int \frac{d u}{h(u)}=\int g(t) d t+C
$$

Example. The logistic equation $u^{\prime}=u(1-u)$ is separable, giving implicitly defined solutions by

$$
\int \frac{d u}{u(1-u)}=t+C
$$

By partial fractions,

$$
\frac{1}{u(1-u)}=\frac{1}{u}-\frac{1}{1-u},
$$

and so

$$
\int \frac{d u}{u(1-u)}=\ln |u|+\ln |1-u|=\ln \left|\frac{u}{1-u}\right| .
$$

The implicitly defined solutions of the ODE are

$$
\ln \left|\frac{u}{1-u}\right|=t+C \Rightarrow \frac{u}{1-u}=\left(\pm e^{C}\right) e^{t}
$$

Can we get explicitly defined solutions from this?
First-Order Linear Equations. A first-order ODE $u^{\prime}=f(t, y)$ if is can be written in the form

$$
u^{\prime}+p(t) u=g(t) .
$$

Multiplying a linear ODE through by the integration factor

$$
\exp \left\{\int p(t) d t\right\}
$$

turns the left-hand side into a total derivative (via the product rule),

$$
\frac{d}{d t}\left(u \exp \left\{\int p(t) d t\right\}\right)=q(t) \exp \left\{\int p(t) d t\right\} .
$$

Integration and solving for u explicitly gives

$$
u=\exp \left\{-\int p(t) d t\right\}\left(\int q(t) \exp \left\{\int p(t) d t\right\}+C\right) .
$$

Example. The ODE $u^{\prime}-2 t u=1$ is linear, and so its general solution is

$$
u=\exp \left\{\int 2 t d t\right\}\left(\int \exp \{-2 t d t\}+C\right)=e^{t^{2}}\left(\int e^{-t^{2}} d t+C\right)
$$

If we were to impose an initial condition $u(a)=b$, then the solution of the IVP is

$$
u=\exp \left(t^{2}-a^{2}\right)\left(\int_{a}^{t} e^{s^{2}} d s+b\right)
$$

Second-Order Linear Equations. A second-order equation $F\left(t, u, u^{\prime}, u^{\prime \prime}\right)=0$ is linear if it can be written in the form

$$
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=f(t) .
$$

Solutions of the homogeneous equation (i.e., $f(t)=0$) form a two dimensional vector space.

Two linearly independent solutions of the homogeneous equation (i.e., $f(t)=0$) form a basis of this two dimensional vector space, and are called a fundamental set of solutions.

Recall that two homogeneous solutions are linearly independent if and only if they have a nonzero Wronskian

$$
W(t)=u_{1}(t) u_{2}^{\prime}(t)-u_{1}^{\prime}(t) u_{2}(t) .
$$

Once a fundamental set of homogeneous solutions u_{1}, u_{2} is obtained, a particular solution of the non-homogeneous equation is given by the variation of parameters formula,

$$
u_{P}(t)=-u_{1}(t) \int \frac{u_{2}(t) f(t)}{W(t)} d t+u_{2}(t) \int \frac{u_{1}(t) f(t)}{W(t)} d t
$$

The general solution of the non-homogeneous equation is then

$$
u=c_{1} u_{1}(t)+c_{2} u_{2}(t)+u_{P}(t) .
$$

When the functions $p(t)$ and $q(t)$ are real analytic, we can find two linearly independent power series solution of the homogeneous equation.
In simplest case, when we have $a u^{\prime \prime}+b u^{\prime}+c u=0$, the guess $u=e^{r t}$ gives the characteristic equation

$$
a r^{2}+b r+c=0
$$

whose roots determine the form of the fundamental set.
When the roots r_{1} and r_{2} are real and distinct, two solutions are $u_{1}=e^{r_{1} t}$ and $u_{2}=e^{r_{2} t}$. When the roots r_{1} and r_{2} are real and repeated, two solutions are $u_{1}=e^{r_{1} t}$ and $u_{2}=t e^{r_{1} t}$. When the roots $\lambda \pm i \mu$ are complex conjugate, two real valued solutions are $u_{1}=$ $e^{\lambda t} \cos (\mu t)$ and $u_{2}=e^{\lambda t} \sin (\mu t)$.
Another case when a fundamental set of solutions can be obtained is when we have $t^{2} u^{\prime \prime}+\alpha t u^{\prime}+\beta u=0$, known as the Cauchy-Euler equation.
The guess $u=t^{r}$ results in the indicial equation $r^{2}+(\alpha-1) r+\beta=0$.
It is left to you to formulate the fundamental set of solutions in the three cases of the roots.
Nonlinear Second-Order Equations. Some nonlinear second-order equations can be solved by reduction to a first-order equation.
Consider the equation $m x^{\prime \prime}=F\left(t, x, x^{\prime}\right)$ for position x and mass m.
If F does not depend on x, then the substitution $y=x^{\prime}$ reduces the second-order equation to the first-order equation $y^{\prime}=F(t, y)$.
Once this is solved for y, then solving the separable first-order equation $y=x^{\prime}$ gives x. If, instead, F does not depend on t, then setting $y=x^{\prime}$ and using the chain rule to get

$$
x^{\prime \prime}=\frac{d}{d t} \frac{d x^{\prime}}{d t}=\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=y(d y / d x),
$$

gives

$$
m y \frac{d y}{d x}=F(x, y)
$$

Once this is solved for y as a function of x, then solving the separable first-order equation $y=x^{\prime}$ gives x.

Another case is when F depends only on x, and hence is conservative, i.e., there is a potential function $V(x)$ such that

$$
F(x)=-\frac{d V}{d x}
$$

The substitution $y=x^{\prime}, x^{\prime \prime}=y(d y / d x)$ then gives the separable first-order equation

$$
m y \frac{d y}{d x}=F(x)
$$

Integration immediately gives

$$
\frac{m y^{2}}{2}+V(x)=E
$$

where the constant of integration E is the total energy in the system (kinetic energy plus potential energy).

