We review the theory of linear systems of first-order homogeneous equations from Math 334 (or its equivalent).
For $\vec{x}=\left(x_{1}, x_{2}\right)^{T}$, consider

$$
\vec{x}^{\prime}=A \vec{x}, \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \operatorname{det} A \neq 0 .
$$

Substitution of the guess $\vec{x}(t)=\vec{v} e^{\lambda t}$ leads the spectral problem

$$
A \vec{v}=\lambda \vec{v} .
$$

An eigenvalue λ is a root of the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0,
$$

and a corresponding eigenvector is a non-zero vectors in $\operatorname{ker}(A-\lambda I)$.
The characteristic equation is

$$
\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det} A=0 .
$$

The assumption $\operatorname{set}(A) \neq 0$ implies that 0 is not an eigenvalue of A (for recall that the product of the eigenvalues of A is the determinant of A).
There are several cases for the form of the general solution of $\vec{x}^{\prime}=A \vec{x}$.
Case I. A has two distinct real eigenvalues λ_{1} and λ_{2}.
Then there are two linearly independent eigenvectors \vec{v}_{1} and \vec{v}_{2} (corresponding to λ_{1} and λ_{2} respectively).
The general solution is $\vec{x}(t)=c_{1} \vec{v}_{1} e^{\lambda_{1} t}+c_{2} \vec{v}_{2} e^{\lambda_{2} t}$ for arbitrary constants c_{1} and c_{2}.
The type and stability of the equilibrium at the origin is determined by the signs of λ_{1} and λ_{2}; the origin is an asymptotically stable node if $\lambda_{1}<0$ and $\lambda_{2}<0$; the origin is a saddle point if $\lambda_{1} \lambda_{2}<0$ (opposite signs); and the origin is an unstable node if $\lambda_{1}>0$ and $\lambda_{2}>0$.
Case II. A has a real repeated eigenvalue λ.
If there are two linearly independent eigenvectors \vec{v}_{1} and \vec{v}_{2} for λ, then the general solution is

$$
\vec{x}(t)=c_{1} \vec{v}_{1} e^{\lambda t}+c_{2} \vec{v}_{2} e^{\lambda t}
$$

and the equilibrium at the origin is a proper node, asymptotically stable if $\lambda<0$ and unstable if $\lambda>0$.
If there is only one linearly independent eigenvector \vec{v} (i.e., the dimension of $\operatorname{mer}(A-$ $\lambda I)=1$), then the general solution has the form

$$
\vec{x}(t)=c_{1} \vec{v} e^{\lambda t}+c_{2}(\vec{w}+t \vec{v}) e^{\lambda t}
$$

where \vec{w} is a generalized eigenvector, i.e., a solution of

$$
(A-\lambda I) \vec{w}=\vec{v}
$$

The equilibrium at the origin is an improper node, asymptotically stable if $\lambda<0$, and unstable if $\lambda>0$.
Case III. A has complex conjugate eigenvalues $\lambda=\alpha \pm \beta i$ for $\beta \neq 0$.
Corresponding complex eigenvectors are of the form $\vec{w} \pm i \vec{v}$, and one complex solution is

$$
(\vec{w}+i \vec{v}) \exp ((\alpha+i \beta) t) .
$$

Using Euler's Formula $\exp (i \theta)=\cos \theta+i \sin \theta$ we can recover two linearly independent real-valued vector solutions from the one complex-valued vector solution, and hence the general solution

$$
\vec{x}(t)=c_{1} e^{\alpha t}(\vec{w} \cos \mu t-\vec{v} \sin \mu t)+c_{2} e^{\alpha t}(\vec{w} \sin \mu t+\vec{v} \cos \mu t) .
$$

The equilibrium at the origin is an asymptotically stable spiral point when $\alpha<0$, a stable center when $\alpha=0$, and an unstable spiral point when $\alpha>0$.
We can now characterize when the equilibrium at the origin of a linear system is asymptotically stable.

Theorem 2.7. The equilibrium at the origin of $\vec{x}^{\prime}=A \vec{x}$ (with $\operatorname{set}(A) \neq 0$) is asymptotically stable if and only if every eigenvalue of A has negative real part.
We can determine when the eigenvalues of A has negative real part in terms of $p=\operatorname{tr} A$ and $q=\operatorname{det} A$.

From $\operatorname{det}(A-\lambda I)=\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det} A$, the roots of the characteristic equation are

$$
\lambda=\frac{p \pm \sqrt{p^{2}-4 q}}{2} .
$$

The eigenvalues of A have negative real parts if and only if $p<0$ and $q>0$, or in other words, if and only if $\operatorname{tr} A<0$ and $\operatorname{det} A>0$.
Example. Find the general solution of

$$
\vec{x}^{\prime}=A \vec{x} \quad \text { where } \quad A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
$$

The characteristic equation for A is $\lambda^{2}-2 \lambda-3=0$, whose roots are $\lambda_{1}=-1$ and $\lambda_{2}=3$. Corresponding eigenvectors for these real distinct eigenvalues are

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

The general solution is

$$
\vec{x}(t)=c_{1} \vec{x}^{(1)}(t)+c_{2} \vec{x}^{(2)}=c_{1}\left[\begin{array}{c}
e^{3 t} \\
2 e^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
e^{-t} \\
-2 e^{-t}
\end{array}\right]=\left[\begin{array}{cc}
e^{3 t} & e^{-t} \\
2 e^{3 t} & -2 e^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
$$

We can sketch the phase portrait over the vector field for this system.

The two linearly independent vector solutions we found form the straight line solutions that make the X through the origin.
The equilibrium at the origin is a saddle point.
Example. At what value(s) of the parameter a does the stability of the equilibrium at the origin change for

$$
\vec{x}^{\prime}=\left[\begin{array}{cc}
a & 1 \\
2 & -1
\end{array}\right] .
$$

The characteristic equation of A is

$$
\lambda^{2}-(a-1) \lambda-(a+2)=0
$$

and so the eigenvalues of A are

$$
\lambda=\frac{a-1 \pm \sqrt{(a-1)^{2}+4(a+2)}}{2} .
$$

One eigenvalue of A is always negative, while the other switched sign at $a=2$. Here are the graphs of the eigenvalues as functions of a.

Note that the function under the root sign, $(a-1)^{2}+4(a+2)=a^{2}+2 a+9$ is always positive: its critical point is $a=-1$ at which is has a global minimum of 8 .
For $a<-2$, the equilibrium at the origin is an asymptotically stable node ($\operatorname{tr} A=a-1<$ 0 and $\operatorname{det} A=-a-2>0$).

For $a=-2$, one eigenvalue is 0 , so the equilibrium at the origin is degenerate (i.e., $\operatorname{det} A=0$).

For $a>-2$, the eigenvalues are real and of opposite sign, so the equilibrium at the origin is a saddle point.

