
Math 521 Lecture #11
§2.2: Linear Systems

We review the theory of linear systems of first-order homogeneous equations from Math
334 (or its equivalent).

For ~x = (x1, x2)
T , consider

~x ′ = A~x, A =

[
a b
c d

]
, det A 6= 0.

Substitution of the guess ~x(t) = ~veλt leads the spectral problem

A~v = λ~v.

An eigenvalue λ is a root of the characteristic equation

det(A− λI) = 0,

and a corresponding eigenvector is a non-zero vectors in ker(A− λI).

The characteristic equation is

λ2 − (tr A)λ+ det A = 0.

The assumption set(A) 6= 0 implies that 0 is not an eigenvalue of A (for recall that the
product of the eigenvalues of A is the determinant of A).

There are several cases for the form of the general solution of ~x ′ = A~x.

Case I. A has two distinct real eigenvalues λ1 and λ2.

Then there are two linearly independent eigenvectors ~v1 and ~v2 (corresponding to λ1 and
λ2 respectively).

The general solution is ~x(t) = c1~v1e
λ1t + c2~v2e

λ2t for arbitrary constants c1 and c2.

The type and stability of the equilibrium at the origin is determined by the signs of λ1
and λ2; the origin is an asymptotically stable node if λ1 < 0 and λ2 < 0; the origin is a
saddle point if λ1λ2 < 0 (opposite signs); and the origin is an unstable node if λ1 > 0
and λ2 > 0.

Case II. A has a real repeated eigenvalue λ.

If there are two linearly independent eigenvectors ~v1 and ~v2 for λ, then the general solution
is

~x(t) = c1~v1e
λt + c2~v2e

λt,

and the equilibrium at the origin is a proper node, asymptotically stable if λ < 0 and
unstable if λ > 0.

If there is only one linearly independent eigenvector ~v (i.e., the dimension of mer(A −
λI) = 1), then the general solution has the form

~x(t) = c1~ve
λt + c2(~w + t~v)eλt



where ~w is a generalized eigenvector, i.e., a solution of

(A− λI)~w = ~v.

The equilibrium at the origin is an improper node, asymptotically stable if λ < 0, and
unstable if λ > 0.

Case III. A has complex conjugate eigenvalues λ = α± βi for β 6= 0.

Corresponding complex eigenvectors are of the form ~w± i~v, and one complex solution is

(~w + i~v) exp
(
(α + iβ)t

)
.

Using Euler’s Formula exp(iθ) = cos θ + i sin θ we can recover two linearly independent
real-valued vector solutions from the one complex-valued vector solution, and hence the
general solution

~x(t) = c1e
αt(~w cosµt− ~v sinµt) + c2e

αt(~w sinµt+ ~v cosµt).

The equilibrium at the origin is an asymptotically stable spiral point when α < 0, a
stable center when α = 0, and an unstable spiral point when α > 0.

We can now characterize when the equilibrium at the origin of a linear system is asymp-
totically stable.

Theorem 2.7. The equilibrium at the origin of ~x ′ = A~x (with set(A) 6= 0) is asymp-
totically stable if and only if every eigenvalue of A has negative real part.

We can determine when the eigenvalues of A has negative real part in terms of p = tr A
and q = det A.

From det(A− λI) = λ2 − (tr A)λ+ det A, the roots of the characteristic equation are

λ =
p±

√
p2 − 4q

2
.

The eigenvalues of A have negative real parts if and only if p < 0 and q > 0, or in other
words, if and only if tr A < 0 and det A > 0.

Example. Find the general solution of

~x ′ = A~x where A =

[
1 1
4 1

]
.

The characteristic equation for A is λ2−2λ−3 = 0, whose roots are λ1 = −1 and λ2 = 3.

Corresponding eigenvectors for these real distinct eigenvalues are

~v1 =

[
1
2

]
, ~v2 =

[
1
−2

]
.

The general solution is

~x(t) = c1~x
(1)(t) + c2~x

(2) = c1

[
e3t

2e3t

]
+ c2

[
e−t

−2e−t

]
=

[
e3t e−t

2e3t −2e−t

] [
c1
c2

]
.



We can sketch the phase portrait over the vector field for this system.
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The two linearly independent vector solutions we found form the straight line solutions
that make the X through the origin.

The equilibrium at the origin is a saddle point.

Example. At what value(s) of the parameter a does the stability of the equilibrium at
the origin change for

~x ′ =

[
a 1
2 −1

]
.

The characteristic equation of A is

λ2 − (a− 1)λ− (a+ 2) = 0,

and so the eigenvalues of A are

λ =
a− 1±

√
(a− 1)2 + 4(a+ 2)

2
.

One eigenvalue of A is always negative, while the other switched sign at a = 2. Here are
the graphs of the eigenvalues as functions of a.



Note that the function under the root sign, (a − 1)2 + 4(a + 2) = a2 + 2a + 9 is always
positive: its critical point is a = −1 at which is has a global minimum of 8.

For a < −2, the equilibrium at the origin is an asymptotically stable node (tr A = a−1 <
0 and det A = −a− 2 > 0).

For a = −2, one eigenvalue is 0, so the equilibrium at the origin is degenerate (i.e.,
det A = 0).

For a > −2, the eigenvalues are real and of opposite sign, so the equilibrium at the origin
is a saddle point.


