Math 521 Lecture #11
§2.2: Linear Systems

We review the theory of linear systems of first-order homogeneous equations from Math
334 (or its equivalent).

For ¥ = (x1,22)T, consider

S a4 _la b
T = AT, A_[c d}’ det A # 0.

Substitution of the guess Z(t) = e leads the spectral problem
AU = A\
An eigenvalue \ is a root of the characteristic equation
det(A — M) =0,

and a corresponding eigenvector is a non-zero vectors in ker(A — AI).

The characteristic equation is
A — (tr A)A +det A = 0.

The assumption set(A) # 0 implies that 0 is not an eigenvalue of A (for recall that the
product of the eigenvalues of A is the determinant of A).

There are several cases for the form of the general solution of ¥’ = AZ.
Case I. A has two distinct real eigenvalues A\; and As.

Then there are two linearly independent eigenvectors 07 and ¥, (corresponding to A\; and
Ao respectively).

At

The general solution is Z(t) = c;UeM" + colre?t for arbitrary constants ¢; and co.

The type and stability of the equilibrium at the origin is determined by the signs of A\;
and \o; the origin is an asymptotically stable node if Ay < 0 and Ay < 0; the origin is a
saddle point if A; Ay < 0 (opposite signs); and the origin is an unstable node if A\; > 0
and Ay > 0.

Case II. A has a real repeated eigenvalue \.

If there are two linearly independent eigenvectors v; and v for A, then the general solution
1s
f(t) = 011716)\t + 022726/\t7

and the equilibrium at the origin is a proper node, asymptotically stable if A < 0 and
unstable if A > 0.

If there is only one linearly independent eigenvector ¥ (i.e., the dimension of mer(A —
Al) = 1), then the general solution has the form

Zf(t) = Cﬂ?@At + Co (117 + tU)e)‘t



where 0 is a generalized eigenvector, i.e., a solution of
(A= X =7.

The equilibrium at the origin is an improper node, asymptotically stable if A < 0, and
unstable if A > 0.

Case III. A has complex conjugate eigenvalues A = o & fi for 5 # 0.

Corresponding complex eigenvectors are of the form w =4 ¥/, and one complex solution is
(@ + i¥) exp ((o + iB)t).

Using Euler’s Formula exp(if) = cosf + isin# we can recover two linearly independent
real-valued vector solutions from the one complex-valued vector solution, and hence the
general solution

F(t) = c1e™ (W cos ut — U'sin pt) + coe™ (@ sin pt + ¥ cos put).
The equilibrium at the origin is an asymptotically stable spiral point when a < 0, a
stable center when o = 0, and an unstable spiral point when o > 0.

We can now characterize when the equilibrium at the origin of a linear system is asymp-
totically stable.

Theorem 2.7. The equilibrium at the origin of ¥’ = AT (with set(A) # 0) is asymp-
totically stable if and only if every eigenvalue of A has negative real part.

We can determine when the eigenvalues of A has negative real part in terms of p = tr A
and ¢ = det A.

From det(A — AI) = A? — (tr A)\ + det A, the roots of the characteristic equation are

)\:pj:— VP? — 4q
> :

The eigenvalues of A have negative real parts if and only if p < 0 and ¢ > 0, or in other
words, if and only if tr A < 0 and det A > 0.

Example. Find the general solution of
21 aa |11
' =AY where A= {4 J .

The characteristic equation for A is A2 —2)\ —3 = 0, whose roots are \; = —1 and \y = 3.

Corresponding eigenvectors for these real distinct eigenvalues are

N Y |
/U]. - 2 9 UQ - _2 .
The general solution is

. . ) Bt et e et ] e
B(t) = crdV(t) + e® = ¢y {26375 T get| T 268 _2et )



We can sketch the phase portrait over the vector field for this system.
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The two linearly independent vector solutions we found form the straight line solutions
that make the X through the origin.
The equilibrium at the origin is a saddle point.

Example. At what value(s) of the parameter a does the stability of the equilibrium at
the origin change for
el )
2 -1

The characteristic equation of A is
M —(a—1DA—(a+2)=0,
and so the eigenvalues of A are

Ca—1%+\/(a—12+4(a+2)
B 2

One eigenvalue of A is always negative, while the other switched sign at a = 2. Here are
the graphs of the eigenvalues as functions of a.
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Note that the function under the root sign, (a — 1)? + 4(a + 2) = a® + 2a + 9 is always
positive: its critical point is @ = —1 at which is has a global minimum of 8.

For a < —2, the equilibrium at the origin is an asymptotically stable node (tr A = a—1 <
0 and det A = —a —2 > 0).

For a = —2, one eigenvalue is 0, so the equilibrium at the origin is degenerate (i.e.,
det A =0).

For a > —2, the eigenvalues are real and of opposite sign, so the equilibrium at the origin
is a saddle point.



