
Math 521 Lecture #13
§2.4: Bifurcations

There are many kinds of bifurcations that can occur in a parameter dependent system
of nonlinear equations.

We will give examples of two of them.

Example (Saddle-Node Bifurcation). Consider the nonlinear system

x′ = µ− x2, y′ = −y.

Each equation can be solved explicitly, but we will use the geometric analysis approach
to see how the solutions change as µ is varied.

The phase line for y′ = −y shows that y(t)→ 0 for all choices of initial y value.

For µ < 0 we have that x′ < −µ, so there are no equilibria, and x(t) decreases with
bound.

For µ = 0 we have one equilibrium at the origin with x′ > 0 for x < 0 and x > 0 (so the
equilibrium is unstable).

The Jacobian for the linearization at the origin (when µ = 0) is diagonal with entries 0
and −1, which are the eigenvalues, and so the equilibrium is non-hyperbolic.



For µ > 0 we have two equilibria (x∗, 0) for x∗ = ±√µ.

The Jacobian of the linearization at the equilibrium (−√µ, 0) is diagonal with entries
2
√
µ and −1, and so it is saddle point.

The Jaocbian of the linearization at the equilibrium (
√
µ, 0) is diagonal with entries

−2
√
µ and −1, and so it is a locally asymptotically stable node.

Hence at µ = 0 we have a Saddle-Node Bifurcation.

Example (Hopf Bifircation). Consider the nonlinear system

x′ = −y + x(µ− x2 − y2), y′ = x+ y(µ− x2 − y2).

The only equilibrium is at the origin.

The Jacobian matrix is

A =

[
µ −1
1 µ

]
.

The characteristic equation of A is

λ2 − 2µ+ (µ2 + 1) = 0.

The eigenvalues are

λ =
2µ±

√
4µ2 − 4(µ2 + 1)

2
= µ± i.

For µ > 0 the equilibrium is an unstable spiral point,

For µ = 0 the equilibrium is a linear center.

For µ < 0 the equilibrium is a locally asymptotically stable spiral point.

What does the phase portrait look like when µ = 0? And, what happens to the phase
portrait as µ passes through µ = 0 from negative to positive?

These can be explicitly answered by transforming the equations into polar coordinates.



With x = r cos θ, y = r sin θ we have

xx′ + yy′ = r cos θ(r′ cos θ − rθ′ sin θ) + r sin θ(r′ sin θ + rθ′ cos θ)

= rr′ cos2 θ − r2θ2 cos θ sin θ + rr′ sin2 θ + r2 sin θ cos θ

= rr′

and

xy′ − yx′ = r cos θ(r′ sin θ + rθ′ cos θ)− r sin θ(r′ cos θ − rθ′ sin θ)
= rr′ cos θ sin θ + r2θ′ cos2 θ − rr′ sin θ cos θ + r2θ′ sin2 θ

= r2θ′.

Using the nonlinear system we have

rr′ = xx′ + yy′ = −xy + x2(µ− x2 − y2) + xy + y2(µ− x2 − y2) = r2(µ− r2)

and
r2θ′ = xy′ − yx′ = x2 + xy(µ− x2 − y2) + y2 − xy(µ− x2 − y2).

The nonlinear system in polar coordinates is

r′ = r(µ− r2), θ′ = 1.

To understand the nonlinear system, we apply the geometric analysis approach to r′ =
r(µ− r2) (although we could solve this separable equation as the book does).

For µ < 0 we have that r′ < 0 for all r > 0, so that all non-equilibrium solutions in the
xy-plane tend to the origin (which in the linearization is locally asymptotically stable
equilibrium).

For µ = 0, we have that r′ < 0 for all r > 0, so that all non-equilibrium solutions in the
xy-plane tend to the origin, and so the origin is a not a center (although the linearization
is a center).



For each fixed µ > 0, the constant function r(t) =
√
µ > 0 is a solution of r′ = r(µ− r2).

Coupled with θ′ = 1, we get a periodic solution r(t) =
√
µ, θ(t) = t+ θ0 in the xy-plane.

The sign of r′ = r(µ − r2) when 0 < r <
√
µ is positive, so solutions starting near the

origin in the xy-plane spiral away from it (the origin is an unstable spiral point), and
move towards the periodic orbit r =

√
µ.

The sign of r′ = r(µ − r2) when r >
√
µ is negative, so solutions starting with large r

value in the xy-plane spiral towards the period orbit r =
√
µ.

The periodic orbit r =
√
µ is called a stable limit cycle.

The appearance of a stable (unstable) limit cycle from a stable (unstable) equilibrium as
the parameter varies is known as a Hopf bifurcation.


