Math 521 Lecture #13§2.4: Bifurcations

There are many kinds of bifurcations that can occur in a parameter dependent system of nonlinear equations.

We will give examples of two of them.

Example (Saddle-Node Bifurcation). Consider the nonlinear system

$$x' = \mu - x^2, \ y' = -y.$$

Each equation can be solved explicitly, but we will use the geometric analysis approach to see how the solutions change as μ is varied.

The phase line for y' = -y shows that $y(t) \to 0$ for all choices of initial y value.

For $\mu < 0$ we have that $x' < -\mu$, so there are no equilibria, and x(t) decreases with bound.

For $\mu = 0$ we have one equilibrium at the origin with x' > 0 for x < 0 and x > 0 (so the equilibrium is unstable).

The Jacobian for the linearization at the origin (when $\mu = 0$) is diagonal with entries 0 and -1, which are the eigenvalues, and so the equilibrium is non-hyperbolic.

For $\mu > 0$ we have two equilibria $(x^*, 0)$ for $x^* = \pm \sqrt{\mu}$.

The Jacobian of the linearization at the equilibrium $(-\sqrt{\mu}, 0)$ is diagonal with entries $2\sqrt{\mu}$ and -1, and so it is saddle point.

The Jaochian of the linearization at the equilibrium $(\sqrt{\mu}, 0)$ is diagonal with entries $-2\sqrt{\mu}$ and -1, and so it is a locally asymptotically stable node.

Hence at $\mu = 0$ we have a Saddle-Node Bifurcation.

Example (Hopf Bifircation). Consider the nonlinear system

$$x' = -y + x(\mu - x^2 - y^2), \ y' = x + y(\mu - x^2 - y^2).$$

The only equilibrium is at the origin.

The Jacobian matrix is

$$A = \begin{bmatrix} \mu & -1 \\ 1 & \mu \end{bmatrix}.$$

The characteristic equation of A is

$$\lambda^2 - 2\mu + (\mu^2 + 1) = 0.$$

The eigenvalues are

$$\lambda = \frac{2\mu \pm \sqrt{4\mu^2 - 4(\mu^2 + 1)}}{2} = \mu \pm i.$$

For $\mu > 0$ the equilibrium is an unstable spiral point,

For $\mu = 0$ the equilibrium is a linear center.

For $\mu < 0$ the equilibrium is a locally asymptotically stable spiral point.

What does the phase portrait look like when $\mu = 0$? And, what happens to the phase portrait as μ passes through $\mu = 0$ from negative to positive?

These can be explicitly answered by transforming the equations into polar coordinates.

With $x = r \cos \theta$, $y = r \sin \theta$ we have

$$xx' + yy' = r\cos\theta(r'\cos\theta - r\theta'\sin\theta) + r\sin\theta(r'\sin\theta + r\theta'\cos\theta)$$
$$= rr'\cos^2\theta - r^2\theta^2\cos\theta\sin\theta + rr'\sin^2\theta + r^2\sin\theta\cos\theta$$
$$= rr'$$

and

$$xy' - yx' = r\cos\theta(r'\sin\theta + r\theta'\cos\theta) - r\sin\theta(r'\cos\theta - r\theta'\sin\theta)$$
$$= rr'\cos\theta\sin\theta + r^2\theta'\cos^2\theta - rr'\sin\theta\cos\theta + r^2\theta'\sin^2\theta$$
$$= r^2\theta'.$$

Using the nonlinear system we have

$$rr' = xx' + yy' = -xy + x^{2}(\mu - x^{2} - y^{2}) + xy + y^{2}(\mu - x^{2} - y^{2}) = r^{2}(\mu - r^{2})$$

and

$$r^{2}\theta' = xy' - yx' = x^{2} + xy(\mu - x^{2} - y^{2}) + y^{2} - xy(\mu - x^{2} - y^{2}).$$

The nonlinear system in polar coordinates is

$$r' = r(\mu - r^2), \ \theta' = 1.$$

To understand the nonlinear system, we apply the geometric analysis approach to $r' = r(\mu - r^2)$ (although we could solve this separable equation as the book does).

For $\mu < 0$ we have that r' < 0 for all r > 0, so that all non-equilibrium solutions in the *xy*-plane tend to the origin (which in the linearization is locally asymptotically stable equilibrium).

For $\mu = 0$, we have that r' < 0 for all r > 0, so that all non-equilibrium solutions in the *xy*-plane tend to the origin, and so the origin is a not a center (although the linearization is a center).

For each fixed $\mu > 0$, the constant function $r(t) = \sqrt{\mu} > 0$ is a solution of $r' = r(\mu - r^2)$. Coupled with $\theta' = 1$, we get a periodic solution $r(t) = \sqrt{\mu}$, $\theta(t) = t + \theta_0$ in the *xy*-plane. The sign of $r' = r(\mu - r^2)$ when $0 < r < \sqrt{\mu}$ is positive, so solutions starting near the origin in the *xy*-plane spiral away from it (the origin is an unstable spiral point), and move towards the periodic orbit $r = \sqrt{\mu}$.

The sign of $r' = r(\mu - r^2)$ when $r > \sqrt{\mu}$ is negative, so solutions starting with large r value in the *xy*-plane spiral towards the period orbit $r = \sqrt{\mu}$.

The periodic orbit $r = \sqrt{\mu}$ is called a **stable limit cycle**.

The appearance of a stable (unstable) limit cycle from a stable (unstable) equilibrium as the parameter varies is known as a Hopf bifurcation.