Math 521 Lecture \#13

§2.4: Bifurcations
There are many kinds of bifurcations that can occur in a parameter dependent system of nonlinear equations.

We will give examples of two of them.
Example (Saddle-Node Bifurcation). Consider the nonlinear system

$$
x^{\prime}=\mu-x^{2}, y^{\prime}=-y .
$$

Each equation can be solved explicitly, but we will use the geometric analysis approach to see how the solutions change as μ is varied.

The phase line for $y^{\prime}=-y$ shows that $y(t) \rightarrow 0$ for all choices of initial y value.
For $\mu<0$ we have that $x^{\prime}<-\mu$, so there are no equilibria, and $x(t)$ decreases with bound.

For $\mu=0$ we have one equilibrium at the origin with $x^{\prime}>0$ for $x<0$ and $x>0$ (so the equilibrium is unstable).

The Jacobian for the linearization at the origin (when $\mu=0$) is diagonal with entries 0 and -1 , which are the eigenvalues, and so the equilibrium is non-hyperbolic.

For $\mu>0$ we have two equilibria $\left(x^{*}, 0\right)$ for $x^{*}= \pm \sqrt{\mu}$.
The Jacobian of the linearization at the equilibrium $(-\sqrt{\mu}, 0)$ is diagonal with entries $2 \sqrt{\mu}$ and -1 , and so it is saddle point.
The Jaocbian of the linearization at the equilibrium $(\sqrt{\mu}, 0)$ is diagonal with entries $-2 \sqrt{\mu}$ and -1 , and so it is a locally asymptotically stable node.

Hence at $\mu=0$ we have a Saddle-Node Bifurcation.
Example (Hopf Bifircation). Consider the nonlinear system

$$
x^{\prime}=-y+x\left(\mu-x^{2}-y^{2}\right), y^{\prime}=x+y\left(\mu-x^{2}-y^{2}\right) .
$$

The only equilibrium is at the origin.
The Jacobian matrix is

$$
A=\left[\begin{array}{cc}
\mu & -1 \\
1 & \mu
\end{array}\right]
$$

The characteristic equation of A is

$$
\lambda^{2}-2 \mu+\left(\mu^{2}+1\right)=0 .
$$

The eigenvalues are

$$
\lambda=\frac{2 \mu \pm \sqrt{4 \mu^{2}-4\left(\mu^{2}+1\right)}}{2}=\mu \pm i .
$$

For $\mu>0$ the equilibrium is an unstable spiral point,
For $\mu=0$ the equilibrium is a linear center.
For $\mu<0$ the equilibrium is a locally asymptotically stable spiral point.
What does the phase portrait look like when $\mu=0$? And, what happens to the phase portrait as μ passes through $\mu=0$ from negative to positive?
These can be explicitly answered by transforming the equations into polar coordinates.

With $x=r \cos \theta, y=r \sin \theta$ we have

$$
\begin{aligned}
x x^{\prime}+y y^{\prime} & =r \cos \theta\left(r^{\prime} \cos \theta-r \theta^{\prime} \sin \theta\right)+r \sin \theta\left(r^{\prime} \sin \theta+r \theta^{\prime} \cos \theta\right) \\
& =r r^{\prime} \cos ^{2} \theta-r^{2} \theta^{2} \cos \theta \sin \theta+r r^{\prime} \sin ^{2} \theta+r^{2} \sin \theta \cos \theta \\
& =r r^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
x y^{\prime}-y x^{\prime} & =r \cos \theta\left(r^{\prime} \sin \theta+r \theta^{\prime} \cos \theta\right)-r \sin \theta\left(r^{\prime} \cos \theta-r \theta^{\prime} \sin \theta\right) \\
& =r r^{\prime} \cos \theta \sin \theta+r^{2} \theta^{\prime} \cos ^{2} \theta-r r^{\prime} \sin \theta \cos \theta+r^{2} \theta^{\prime} \sin ^{2} \theta \\
& =r^{2} \theta^{\prime}
\end{aligned}
$$

Using the nonlinear system we have

$$
r r^{\prime}=x x^{\prime}+y y^{\prime}=-x y+x^{2}\left(\mu-x^{2}-y^{2}\right)+x y+y^{2}\left(\mu-x^{2}-y^{2}\right)=r^{2}\left(\mu-r^{2}\right)
$$

and

$$
r^{2} \theta^{\prime}=x y^{\prime}-y x^{\prime}=x^{2}+x y\left(\mu-x^{2}-y^{2}\right)+y^{2}-x y\left(\mu-x^{2}-y^{2}\right) .
$$

The nonlinear system in polar coordinates is

$$
r^{\prime}=r\left(\mu-r^{2}\right), \theta^{\prime}=1
$$

To understand the nonlinear system, we apply the geometric analysis approach to $r^{\prime}=$ $r\left(\mu-r^{2}\right)$ (although we could solve this separable equation as the book does).
For $\mu<0$ we have that $r^{\prime}<0$ for all $r>0$, so that all non-equilibrium solutions in the $x y$-plane tend to the origin (which in the linearization is locally asymptotically stable equilibrium).

For $\mu=0$, we have that $r^{\prime}<0$ for all $r>0$, so that all non-equilibrium solutions in the $x y$-plane tend to the origin, and so the origin is a not a center (although the linearization is a center).

For each fixed $\mu>0$, the constant function $r(t)=\sqrt{\mu}>0$ is a solution of $r^{\prime}=r\left(\mu-r^{2}\right)$. Coupled with $\theta^{\prime}=1$, we get a periodic solution $r(t)=\sqrt{\mu}, \theta(t)=t+\theta_{0}$ in the $x y$-plane. The sign of $r^{\prime}=r\left(\mu-r^{2}\right)$ when $0<r<\sqrt{\mu}$ is positive, so solutions starting near the origin in the $x y$-plane spiral away from it (the origin is an unstable spiral point), and move towards the periodic orbit $r=\sqrt{\mu}$.
The sign of $r^{\prime}=r\left(\mu-r^{2}\right)$ when $r>\sqrt{\mu}$ is negative, so solutions starting with large r value in the $x y$-plane spiral towards the period orbit $r=\sqrt{\mu}$.
The periodic orbit $r=\sqrt{\mu}$ is called a stable limit cycle.

The appearance of a stable (unstable) limit cycle from a stable (unstable) equilibrium as the parameter varies is known as a Hopf bifurcation.

