
Math 521 Lecture #14
§2.5.1: The Law of Mass Action

We look at the rule that models the rate of chemical reactions based upon their concen-
trations.

This rule is not limited to chemical reactions as it applies to the interactions of predator
and prey, infected and susceptible, seller and buyer, etc.

Example 2.22 (Unitary reaction). A single molecule decays into a daughter particle
and releases energy.

This unimolecular reaction is denoted by

X → products

with a rate of reaction proportional to the amount present, r = kX.

We are using the letter X for both the molecule and its concentration.

The model for the decay of X is the exponential law

dX

dt
= −kX.

Notational we write this as
X

k→ products.

Example 2.23 (Binary Reaction). A molecule of X and a molecule of Y (the
reactants) combine to form a molecule of Z (the product):

X + Y → Z.

The reaction rate presumably depends on the concentrations X and Y : what is the
reaction rate r(X, Y )?

We expect that r(0, Y ) = 0 for all Y and r(X, 0) = 0 for all X: both X and Y are needed
to form Z.

Because the graph of r(X, Y ) is identically zero along the horizontal coordinate axes,
the partial derivatives rX(0, Y ), rXX(0, Y ), . . . and rY (X, 0), rY Y (X, 0), . . . are identically
zero.

By Taylor’s Theorem we have that

r(X, Y ) = r(0, 0) + rX(0, 0)X + rY (0, 0)Y

+ (1/2)rXX(0, 0) + rXY (0, 0)XY + (1/2)rY Y (0, 0)Y 2 + h.o.t.

= rXY (0, 0)XY + h.o.t.

Assuming that the rate of the binary reaction is proportional to the product of the
concentrations,

r(X, Y ) = kXY



for a rate constant k, is known as the law of mass action.

Notational this is written
X + Y

k→ Z.

The rate constant k is not really constant because the rate of reaction also depends on
the temperature as in

k = k0 exp(−E/RT )

where R is the gas constant, T is the temperature in degrees Kelvin, and E is the
activation energy.

This form of k is known as the Arrhenius rate.

As a simplifying assumption we will ignore temperature dependence in the rate constant,
i.e., we assume the reactions are isothermal.

Example 2.27. We show how to get differential equations from

X + Y
k→ Z, r = kXY.

With one molecule of X and one molecule of Y combining at a rate of r = kXY to
produce one molecule of Z, we have that the change in the concentrations of X, Y , and
Z are determined by

dX

dt
= −r, dY

dt
= −r, dZ

dt
= r.

By subtracting the second from the first we get

dX

dt
− dY

dt
= 0,

so that X − Y is a constant determined by the initial concentrations of X and Y .

The expression X(t)− Y (t) = X(0)− Y (0) = c is a conservation law.

From it we can solve for Y (t) = X(t)−c for all t, which gives the familiar looking logistic
growth model for X,

dX

dt
= −r = −kXY = −kX(X − c) = kcX

(
1− X

c

)
.

We can assume WLOG that c = X(0) − Y (0) > 0, so that X(t) → c (the stable
equilibrium in the logistic equation) while Y (t)→ 0.

There is another conservation law, namely X + Z is constants with X(t) + Z(t) = X(0)
for all t, so that Z(t)→ X(0)− c = Y (0), i.e., all of Y is converted into Z.

Example 2.28 (Reversible Reactions). Sometimes a reaction is reversible, as in

X + Y
k1→ Z, r1 = k1XY,

Z
k−1→ X + Y, r−1 = k−1Z.



Notational we write this reversible reaction as

X + Y
k1
�
k−1

Z.

The associated system of differential equations is

dX

dt
= −r1 + r−1,

dY

dt
= −r1 + r−1,

dZ

dt
= r1 − r−1.

Two conservation laws are X − Y = c1 and X +Z = c2 which allows us to write a single
equation

dX

dt
= −k1XY + k−1Z = −k1X(X − c1) + k−1(c2 −X).

This can be analyzed by the geometric approach to obtain the phase line.

An equilibrium solution of this satisfies k1XY = k−1Z, or XY/Z = k−1/k1 = K where
K, the ratio of the backward to forward rates is called an equilibrium constant.

General Reactions and Conservation Laws. Consider the reaction

mX + nY
k→ pW + qZ,

where m molecules of X react with n molecules of Y to produce p molecules of W and
q molecules of Z.

The law of mass action states that the rate of this reaction is r = kXmY n.

The system of differential equations for this reaction is

dX

dt
= −mr,

dY

dt
= −nr, dW

dt
= pr,

dZ

dt
= qr.

Some conversation laws here are nX −mY = c1 and pX + mW = c2.

In the most general setting, consider m different chemical species Xi, i = 1, . . . ,m and n
reactions of the form

m∑
i=1

aijXi
kj→

m∑
i=1

bijXi, j = 1, . . . , n

where the stoichiometric coefficients aij and bij are nonnegative integers.

The reactions rates are

rj = kj

m∏
i=1

X
aij
i , j = 1, . . . , n.

The system of differential equations for the reactions is

dXi

dt
=

n∑
j=1

(
bij − aij

)
rj, j = 1, . . . , n.



If we let S be the m × n matrix with entries bij − aij (the stoichiometric matrix),
~X = [X1, . . . , Xm]T , and ~r = [r1, . . . , rn]T , then the system of differential equations in
matrix form is

d ~X

dt
= S~r.

A conservation law has the form

d

dt

m∑
i=1

ciXi = 0

for constants c1, . . . , cm (not all zero).

In terms of initial concentrations ~X(0) = [X1(0), . . . , Xm(0)]T and ~c = [c1, . . . , cm]T , we
have

~c T ~X = ~c T ~X(0).

Multiplying the system of differential equations through by ~c T we get

~c TS~r = ~c T d
~X

dt
=

d

dt

(
~c T ~X

)
=

d

dt

(
~c T ~X(0)

)
= 0.

This holds for all values of ~r, so that ~c TS = 0, or ST~c = 0.

Thus the conservation laws are given by nonzero elements ~c ∈ kerST , where the number
of linearly independent conservation laws is given by the dimension of the kernel of ST .


