Math 521 Lecture #14
§2.5.1: The Law of Mass Action

We look at the rule that models the rate of chemical reactions based upon their concen-
trations.

This rule is not limited to chemical reactions as it applies to the interactions of predator
and prey, infected and susceptible, seller and buyer, etc.

Example 2.22 (Unitary reaction). A single molecule decays into a daughter particle
and releases energy.

This unimolecular reaction is denoted by
X — products

with a rate of reaction proportional to the amount present, r = k.X.
We are using the letter X for both the molecule and its concentration.

The model for the decay of X is the exponential law

dX
- kX
dt

Notational we write this as i
X — products.

Example 2.23 (Binary Reaction). A molecule of X and a molecule of Y (the
reactants) combine to form a molecule of Z (the product):

X+Y —> Z

The reaction rate presumably depends on the concentrations X and Y: what is the
reaction rate r(X,Y)?

We expect that 7(0,Y) = 0 for all Y and r(X,0) = 0 for all X: both X and Y are needed
to form Z.

Because the graph of r(X,Y) is identically zero along the horizontal coordinate axes,
the partial derivatives rx(0,Y),rxx(0,Y),... and ry(X,0),ryy(X,0), ... are identically
ZEro.

By Taylor’s Theorem we have that

r(X,Y) =7r(0,0) 4+ rx(0,0)X +ry(0,0)Y
+ (1/2)rxx(0,0) + rxy(0,0) XY + (1/2)ryy(0,0)Y? + h.o.t.
= er(O, O)XY + h.o.t.

Assuming that the rate of the binary reaction is proportional to the product of the
concentrations,

r(X,Y) = kXY



for a rate constant k, is known as the law of mass action.

Notational this is written
xX+vy &z

The rate constant k is not really constant because the rate of reaction also depends on
the temperature as in

k = koexp(—E/RT)

where R is the gas constant, 7' is the temperature in degrees Kelvin, and E is the
activation energy.

This form of k£ is known as the Arrhenius rate.

As a simplifying assumption we will ignore temperature dependence in the rate constant,
i.e., we assume the reactions are isothermal.

Example 2.27. We show how to get differential equations from

X+Y 5z r=kXxYy

With one molecule of X and one molecule of Y combining at a rate of r = kXY to
produce one molecule of Z, we have that the change in the concentrations of X, Y, and
Z are determined by

dX dy dz
a O at - ar
By subtracting the second from the first we get
dX dY
da dt

so that X — Y is a constant determined by the initial concentrations of X and Y.
The expression X (t) — Y (t) = X(0) — Y(0) = ¢ is a conservation law.

From it we can solve for Y (t) = X (t) — ¢ for all ¢, which gives the familiar looking logistic
growth model for X,

dXxX X
E:—r:—kzXY:—k:X(X—c):ch (1——).

c

We can assume WLOG that ¢ = X(0) — Y(0) > 0, so that X(¢) — ¢ (the stable
equilibrium in the logistic equation) while Y (¢) — 0.

There is another conservation law, namely X + Z is constants with X (¢) + Z(t) = X (0)
for all ¢, so that Z(t) — X (0) — ¢ =Y(0), i.e., all of Y is converted into Z.

Example 2.28 (Reversible Reactions). Sometimes a reaction is reversible, as in
X+Y B 72 r=kXY,
2" XY, r =k 2



Notational we write this reversible reaction as

k1
X+Y & Z
k_1

The associated system of differential equations is

dX dy dz

7l A e A Pyl 5 T el A B Bl D
dt 1 1 dt 1 1 dt 1 1

Two conservation laws are X —Y = ¢; and X + Z = ¢, which allows us to write a single

equation
dX

dt
This can be analyzed by the geometric approach to obtain the phase line.

An equilibrium solution of this satisfies k1 XY = k_1Z, or XY/Z = k_1/k; = K where
K, the ratio of the backward to forward rates is called an equilibrium constant.

= I XY + k1 Z =~k X(X — 1) + k_1(ca — X).

General Reactions and Conservation Laws. Consider the reaction
mX+nYﬁ>pW—|—qZ,

where m molecules of X react with n molecules of Y to produce p molecules of W and
¢ molecules of Z.

The law of mass action states that the rate of this reaction is r = £ X™Y™.

The system of differential equations for this reaction is

dX ay aw dz

— = -mr, — =-nr, —— =pr, —
dt ’ Todt p’dt

=qr.
dt ¢

Some conversation laws here are nX — mY = ¢; and pX + mW = cs.

In the most general setting, consider m different chemical species X;, i =1,...,m and n

reactions of the form
m m

kj ,
E (Iini—> bini, jzl,...,n
i=1 i=1
where the stoichiometric coefficients a;; and b;; are nonnegative integers.

The reactions rates are .
T :k’jHX,;lij, j = 1,...,71.
i=1
The system of differential equations for the reactions is
dX; <

dt Z(sz —ayg)ry, j=1,...,n.

J=1




If we let S be the m x n matrix with entries b;; — a;; (the stoichiometric matrix),

—

X = [Xy,..., X", and 7 = [rq,...,7,]7, then the system of differential equations in
matrix form is .

dX

2 _ s

dt

A conservation law has the form

d m
dt;C

for constants ¢y, ..., ¢, (not all zero).
In terms of initial concentrations X (0) = [X1(0), ..., X,n(0)]T and &= [cy, ...
have

cTX =2"X(0).
Multiplying the system of differential equations through by &7 we get

o dX  d e d,go
TST:CT%:%(CTX):E<CTX(O>):O.

o

This holds for all values of 7, so that ¢ 7S =0, or ST¢ = 0.

L Cm]t, We

Thus the conservation laws are given by nonzero elements & € kerS?, where the number
of linearly independent conservation laws is given by the dimension of the kernel of ST.



