Math 521 Lecture \#15

§3.1,3.1.1: Regular Perturbation Theory

The basic idea of perturbation theory is to find analytic approximations to solutions of equations.

Consider the equation $F\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, \epsilon\right)=0, t \in I$, where $\epsilon \ll 1$.
A perturbation series is an analytic guess for a solution of the form

$$
y_{0}(t)+\epsilon y_{1}(t)+\epsilon^{2} y_{2}(t)+\cdots
$$

The basic idea of the regular perturbation method is to substitute this guess into the equation and solve for $y_{0}(t), y_{1}(t), y_{2}(t)$, etc.

The first few terms of a perturbation series are called a perturbation solution or approximation.
We call $y_{0}(t)$ the leading order term of the perturbation series.
If this method is successful, then $y_{0}(t)$ should be a solution of the unperturbed equation $F\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, 0\right)=0$.
Example 3.1. We apply the perturbation method to approximate the roots of

$$
x^{2}+2 \epsilon x-3=0 .
$$

We can check the approximate solutions against the exact solutions, since we know how to the exact solutions in this case.

We substitute the perturbation series

$$
x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\cdots
$$

into the equation to get

$$
\left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\cdots\right)^{2}+2 \epsilon\left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\cdots\right)-3=0 .
$$

Expanding and collecting the coefficients of like powers of ϵ gives us

$$
x_{0}^{2}-3+2 x_{0}\left(x_{1}+1\right) \epsilon+\left(x_{1}^{2}+2 x_{0} x_{2}+2 x_{1}\right) \epsilon^{2}+\cdots=0 .
$$

Since this power series in ϵ equals zero, the coefficients of each power of ϵ must be zero, which gives us

$$
x_{0}^{2}=3, x_{1}=-1, x_{1}^{2}+2 x_{0} x_{2}+2 x_{1}=0, \ldots .
$$

These imply that

$$
x_{0}= \pm \sqrt{3}, x_{1}=-1, x_{2}= \pm \frac{1}{2 \sqrt{3}}, \cdot
$$

From these we get two approximate solutions

$$
x=-\sqrt{3}-\epsilon+\frac{1}{2 \sqrt{3}} \epsilon^{2}+\cdots, x=-\sqrt{3}-\epsilon-\frac{1}{2 \sqrt{3}} \epsilon^{2}+\cdots .
$$

We have three-term perturbation approximations of the two roots of the quadratic polynomial.

The exact roots are

$$
x=\frac{-2 \epsilon \pm \sqrt{4 \epsilon^{2}+12}}{2}=-\epsilon \pm \sqrt{3+\epsilon^{2}} .
$$

Using the binomial formula

$$
(1+x)^{p}=1+p x+\frac{p(p-1}{2} x^{2}+\cdots
$$

we obtain

$$
\sqrt{3+\epsilon^{2}}=\sqrt{3}\left(1+\frac{\epsilon^{2}}{\sqrt{3}}\right)^{1 / 2}=\sqrt{3}\left(1+\frac{\epsilon^{2}}{6}+\cdots\right)
$$

Thus the exact solutions are

$$
x= \pm \sqrt{3}-\epsilon \pm \frac{1}{2 \sqrt{3}} \epsilon^{2}+\cdots
$$

which is what the perturbation method obtained.
Now we apply the perturbation method to a differential equation.
Example (§1.3.1). Suppose a body of mass m, initially with a velocity of V_{0}, moves in a resistive medium along a straight line.
When the velocity of the body is $v=v(t)$, the force of the resistance is $-a v+b v^{2}$ for positive constants a and b.
We assume that $b \ll a$, meaning that b is much smaller than b.
By Newton's second law, the velocity of the body is governed by the IVP

$$
m \frac{d v}{d t}=-a v+b v^{2}, v(0)=V_{0}
$$

We have four parameters $[m]=M,[a]=M T^{-1},[b]=M L^{-1}$, and $\left[V_{0}\right]=L T^{-1}$, and so we scale time and velocity to non-dimensionalize the IVP.
The scale for the velocity it is maximum value V_{0} which occurs at the start $t=0$.
If b were 0 , then the velocity would act like the solution $V_{0} e^{-a t / m}$ of $v^{\prime}=-v, v(0)=V_{0}$. So a scale for the time is m / a.

With

$$
y=\frac{v}{V_{0}}, \tau=\frac{t}{m / a}=\frac{a t}{m},
$$

the IVP becomes

$$
\frac{m a V_{0}}{m} \frac{d y}{d \tau}=\frac{d v}{d t}=-a V_{0} y+b V_{0}^{2} y^{2}, y(0)=\frac{V_{0}}{V_{0}}=1
$$

The ODE becomes

$$
\frac{d y}{d t}=-y+\epsilon y^{2}
$$

where

$$
\epsilon=\frac{b V_{0}}{a} \ll 1
$$

The ODE is a Bernoulli equation that can be solved by the change of variable $w=y^{-1}$ to give the solution of the IVP as

$$
y(t)=\frac{e^{-t}}{1+\epsilon\left(e^{-t}-1\right)}
$$

Expanding this solution as a Taylor series in ϵ we get

$$
y(t)=e^{-t}+\epsilon\left(e^{-t}-e^{-2 t}\right)+\epsilon^{2}\left(e^{-t}-2 e^{-2 t}+e^{-3 t}\right)+\cdots
$$

Notice that the leading term e^{-t} is the solution of the unperturbed $y^{\prime}=-y, y(0)=1$, and provided an analytic approximation to the solution of the perturbed $y^{\prime}=-y+\epsilon y^{2}$, $y(0)=0$ for small ϵ.
To see that this is so, we form the perturbation series

$$
y(t)=y_{0}(t)+\epsilon y_{1}(t)+\epsilon^{2} y-2(t)+\cdots
$$

and substitute this guess into the ODE to get

$$
y_{0}^{\prime}+\epsilon y_{1}^{\prime}+\epsilon^{2} y_{2}^{\prime \prime}+\cdots=-\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\cdots\right)+\epsilon\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\cdots\right)^{2} .
$$

Expanding and collecting like terms gives the sequence of ODEs

$$
y_{0}^{\prime}=-y_{0}, \quad y_{1}^{\prime}=-y_{1}+y_{0}^{2}, \quad y_{2}^{\prime}=-y_{2}+2 y_{0} y_{1}, \text { etc. }
$$

Applying the initial condition $y(0)=1$ to the perturbation series gives

$$
y_{0}(0)+\epsilon y_{1}(0)+\epsilon^{2} y_{2}(0)+\cdots=1
$$

which implies that

$$
y(0)=1, \quad y_{1}(0)=0, \quad y_{2}(0)=0, \text { etc. }
$$

We obtain a recursive set of linear IVPs for the coefficient functions in the perturbation series which we solve to get

$$
y_{0}=e^{-t}, \quad y_{1}=e^{-t}-e^{-2 t}, \quad y_{2}=e^{-t}-2 e^{-2 t}+e^{-3 t}, \text { etc. }
$$

A three-term perturbation solution is

$$
y=e^{-t}+\epsilon\left(e^{-t}-e^{-2 t}\right)+\epsilon^{2}\left(e^{-t}-2 e^{-2 t}+e^{-3 t}\right)
$$

which is the degree two Taylor polynomial coming from the Taylor series expansion of the exact solution.

We think of the ϵ and ϵ^{2} terms as first- and second-order corrections to the leading order term $y_{0}=e^{-t}$.

