
Math 521 Lecture #15
§3.1,3.1.1: Regular Perturbation Theory

The basic idea of perturbation theory is to find analytic approximations to solutions of
equations.

Consider the equation F (t, y, y′, y′′, . . . , ε) = 0, t ∈ I, where ε� 1.

A perturbation series is an analytic guess for a solution of the form

y0(t) + εy1(t) + ε2y2(t) + · · ·.

The basic idea of the regular perturbation method is to substitute this guess into the
equation and solve for y0(t), y1(t), y2(t), etc.

The first few terms of a perturbation series are called a perturbation solution or
approximation.

We call y0(t) the leading order term of the perturbation series.

If this method is successful, then y0(t) should be a solution of the unperturbed equation
F (t, y, y′, y′′, . . . , 0) = 0.

Example 3.1. We apply the perturbation method to approximate the roots of

x2 + 2εx− 3 = 0.

We can check the approximate solutions against the exact solutions, since we know how
to the exact solutions in this case.

We substitute the perturbation series

x = x0 + εx1 + ε2x2 + · · ·

into the equation to get

(x0 + εx1 + ε2x2 + · · ·)2 + 2ε(x0 + εx1 + ε2x2 + · · ·)− 3 = 0.

Expanding and collecting the coefficients of like powers of ε gives us

x20 − 3 + 2x0(x1 + 1)ε+ (x21 + 2x0x2 + 2x1)ε
2 + · · · = 0.

Since this power series in ε equals zero, the coefficients of each power of ε must be zero,
which gives us

x20 = 3, x1 = −1, x21 + 2x0x2 + 2x1 = 0, . . . .

These imply that

x0 = ±
√

3, x1 = −1, x2 = ± 1

2
√

3
, ·.

From these we get two approximate solutions

x = −
√

3− ε+
1

2
√

3
ε2 + · · ·, x = −

√
3− ε− 1

2
√

3
ε2 + · · ·.



We have three-term perturbation approximations of the two roots of the quadratic poly-
nomial.

The exact roots are

x =
−2ε±

√
4ε2 + 12

2
= −ε±

√
3 + ε2.

Using the binomial formula

(1 + x)p = 1 + px+
p(p− 1

2
x2 + · · ·,

we obtain
√

3 + ε2 =
√

3

(
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ε2√
3
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=
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(
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6
+ · · ·

)
.

Thus the exact solutions are

x = ±
√

3− ε± 1

2
√

3
ε2 + · · ·

which is what the perturbation method obtained.

Now we apply the perturbation method to a differential equation.

Example (§1.3.1). Suppose a body of mass m, initially with a velocity of V0, moves
in a resistive medium along a straight line.

When the velocity of the body is v = v(t), the force of the resistance is −av + bv2 for
positive constants a and b.

We assume that b� a, meaning that b is much smaller than b.

By Newton’s second law, the velocity of the body is governed by the IVP

m
dv

dt
= −av + bv2, v(0) = V0.

We have four parameters [m] = M , [a] = MT−1, [b] = ML−1, and [V0] = LT−1, and so
we scale time and velocity to non-dimensionalize the IVP.

The scale for the velocity it is maximum value V0 which occurs at the start t = 0.

If b were 0, then the velocity would act like the solution V0e
−at/m of v′ = −v, v(0) = V0.

So a scale for the time is m/a.

With

y =
v

V0
, τ =

t

m/a
=
at

m
,

the IVP becomes

maV0
m

dy

dτ
=
dv

dt
= −aV0y + bV 2

0 y
2, y(0) =

V0
V0

= 1.

The ODE becomes
dy

dt
= −y + εy2



where

ε =
bV0
a
� 1.

The ODE is a Bernoulli equation that can be solved by the change of variable w = y−1

to give the solution of the IVP as

y(t) =
e−t

1 + ε(e−t − 1)
.

Expanding this solution as a Taylor series in ε we get

y(t) = e−t + ε(e−t − e−2t) + ε2(e−t − 2e−2t + e−3t) + · · ·.

Notice that the leading term e−t is the solution of the unperturbed y′ = −y, y(0) = 1,
and provided an analytic approximation to the solution of the perturbed y′ = −y + εy2,
y(0) = 0 for small ε.

To see that this is so, we form the perturbation series

y(t) = y0(t) + εy1(t) + ε2y − 2(t) + · · ·

and substitute this guess into the ODE to get

y′0 + εy′1 + ε2y′′2 + · · · = −(y0 + εy1 + ε2y2 + · · ·) + ε(y0 + εy1 + ε2y2 + · · ·)2.

Expanding and collecting like terms gives the sequence of ODEs

y′0 = −y0, y′1 = −y1 + y20, y′2 = −y2 + 2y0y1, etc.

Applying the initial condition y(0) = 1 to the perturbation series gives

y0(0) + εy1(0) + ε2y2(0) + · · · = 1

which implies that
y(0) = 1, y1(0) = 0, y2(0) = 0, etc.

We obtain a recursive set of linear IVPs for the coefficient functions in the perturbation
series which we solve to get

y0 = e−t, y1 = e−t − e−2t, y2 = e−t − 2e−2t + e−3t, etc.

A three-term perturbation solution is

y = e−t + ε(e−t − e−2t) + ε2(e−t − 2e−2t + e−3t)

which is the degree two Taylor polynomial coming from the Taylor series expansion of
the exact solution.

We think of the ε and ε2 terms as first- and second-order corrections to the leading order
term y0 = e−t.


