
Math 521 Lecture #16
§3.1.2: Nonlinear Oscillations

We saw last time that the perturbation method gave approximations of solutions that
compared favorably with the exact solutions.

We apply the perturbation method to another nonlinear problem.

Example. Consider an undamped mass-spring system for an object of mass m with
displacement y from equilibrium,.

We assume that the restoring force of the spring is the nonlinear ky + ay3 for positive
constants k and a (characterizing the stiffness of the spring).

We further assume that a� k, so that the nonlinear part of the restoring force is small
when compared with the linear part.

The object is released from a positive displacement A from equilibrium.

The IVP that models the displacement y = y(τ) of the object in this nonlinear mass-
spring system is

m
d2y

dt2
= −ky − ay3, τ > 0,

y(0) = A, y′(0) = 0.

Without damping we reasonably expect that non-equilibrium solutions should be peri-
odic, that the equilibrium at the origin is a nonlinear center.

However, the presence of the nonlinearity y3 means that the problem cannot be solved
exactly to confirm this.

But, because a� k, a perturbation method is appropriate to find an an approximation
to a periodic solution.

We first non-dimensionalize the problem.

We dimensions of the four parameters in the problem are [k] = MT−2, [a] = ML−2T−2,
[m] = M , and [A] = L.

We use the initial displacement A to scale y:

u =
y

A
.

For a time scale we look for one that permits us to neglect the “small” term ay3.

By so doing we get my′′ = −ky which has periodic solutions of the form cos
√
kt/m with

a period proportional to
√
m/k.

We use this periodic to scale time:

t =
τ√
m/k

.



With this scaling of t and y, the ODE becomes

m

(
kA

m

)
d2u

dt2
= m

dy

dt
= −kAu− aA3u3.

For a dimensionless parameter ε = aA2/k we have the Duffing equation

d2u

dt2
+ u+ εu3 = 0.

The initial conditions become

u(0) =
A

A
= 1,

du

dt
(0) = 0.

Assuming that ε is small means that aA2 � k and not just a� k.

Here is the phase portrait of the Duffing equation when ε = 0.01 in the variables ξ = u
and η = u′, i.e., ξ′ = η, and η′ = −ξ − εξ3.

It appears numerically that the equilibrium at the origin is a nonlinear center: every
non-equilibrium solution is periodic.

The level sets (circles) of z = ξ2 + η2 are “almost” solutions of the ODE because

d

dt

(
ξ2 + η2

)
= 2ξξ′ + 2ηη′ = 2

(
ξη − η(ξ + εξ3)

)
= −2εξ3η ≈ 0.

The perturbation guess for a periodic solution has the form

u(t) = u0(t) + εu1(t) + ε2u2(t) + · · ·

for functions u0, u1, u2, etc., to be determined.



Substitution of the perturbation series into the IVP gives

(u′′0 + εu′′1 + ε2u′′2 + · · ·) + (u0 + εu1 + ε2u2 + · · ·) + ε(u0 + εu1 + ε2u2 + · · ·)3 = 0,

1 = u0(0) + εu1(0) + ε2u2(0) + · · ·, 0 = u′(0) = u′0(0) + εu′1(0) + ε2u′2(0) + · · ·.

The first three linear second-order IVPS in the sequence of linear second-order IVPS
from this are

u′′0 + u0 = 0, u0(0) = 1, u′0(0) = 0,

u′′1 + u1 = −u30, u1(0) = 0, u′1(0) = 0,

u′′2 + u2 = −3u20u1, u2(0) = 0. u′2(0) = 0.

The first one gives
u0(t) = cos t,

which matches the solution of the unperturbed problem.

Using the solution of the first IVP, the second IVP is

u′′1 + u1 = − cos3 t, u1(0) = 0, u′1(0) = 0.

To solve this one we need the trigonometry identity

cos 3t = 4 cos3 t− 3 cos t

so that the linear second-order ODE becomes

u′′1 + u1 = −3 cos t+ cos 3t

4
.

The general solution of the homogeneous part is c1 cos t+ c2 sin t.

For a particular solution we use the Method of Undetermined Coefficients to guess the
particular solution as

up = C cos 3t+Dt cos t+ Et sin t.

With
u′p = −3C sin 3t+D(cos t− t sin t) + E(sin t+ t cos t)

and
u′′p = −9C cos 3t+D(−2 sin t− t cos t) + E(2 cos t− t sin t)

we have that the undetermined coefficients in up satisfy

−8C = −1

4
, −2D = 0, 2E = −3

4
.

Thus

C =
1

32
, D = 0, E = −3

8
.

With the general solution being

u2 = c1 cos t+ c2 sin t+
1

32
cos 3t− 3

8
t sin t,



the initial conditions u2(0) = 0 and u′2(0) = 0 imply that c1 and c2 satisfy

0 = c1 +
1

32
, 0 = c2.

The solution of the IVP for u2 is

u2 =
cos 3t− cos t

32
− 3

8
t sin t.

The two-term approximation for u then takes the form

ua = cos t+ ε

[
cos 3t− cos t

32
− 3

8
t sin t

]
.

The leading-order term is periodic, but the correction term is not.

Even for very small ε, the second term will eventually get large because the secular
term −(3/8)t sin t is unbounded as t→∞.

This disagrees with the numerically generated phase portrait of the system.

This means that on the interval [0,∞) the two-term approximation is not a uniform
approximation.

Adding in higher order terms to the approximation doesn’t negate the secular effect of
the second term.

The best we can conclude is that the two-term (or higher order term) approximation is
uniform on a given finite length interval [0, T ] for sufficiently small ε.


