
Math 521 Lecture #18
§3.1.4: Asymptotic Analysis

We have found previously what we called good (or uniform) approximations to exact
solutions of IVPs.

To what extend do these good approximations really approximate exact solutions?

We shall quantity this notion of good approximation in the context of two order relations.

Definitions. Let f(ε) and g(ε) be defined in some neighbourhood (or punctured neigh-
bourhood) of ε = 0.

(We write
f(ε) = o(g(ε)) as ε→ 0,

and say f is little oh of g if

lim
ε→0

∣∣∣∣f(ε)

g(ε)

∣∣∣∣ = 0.

We write
f(ε) = O(g(ε))

and say f is big oh of g if there exists M > 0 such that

|f(ε)| ≤M |g(ε)|

for all ε in some neighbourhood (or punctured neighbourhood) of 0.

In both of these, we can replace ε → 0 with ε → ε0 for ε0 finite or infinite, and/or
one-sided limits.

The comparison function g is called a gauge function.

Common gauge functions are g(ε) = εn and g(ε) = εn(ln ε)m for real numbers m and n.

To say f(ε) = O(1) means that f is bounded in a neighbourhood of ε = 0.

To say f(ε) = o(1) means that f(ε)→ 0 as ε→ 0.

When f = o(g), then f goes to 0 faster than g does as ε→ 0, and we write f(ε)� g(ε).

Example 3.2. We can verify that ε2 ln ε = o(ε) as ε→ 0+ by L’Hôpital’s rule:

lim
ε→0+

ε2 ln ε

ε
= lim

ε→0+

ln ε

1/ε
= lim

ε→0+

1/ε

−1/ε2
= 0.

Example 3.3. Does sin ε = O(ε) as ε→ 0?

By the Mean Value Theorem applied to sin θ on the interval [0, ε], there exists c ∈ (0, ε)
such that

sin ε

ε
=

sin ε− sin 0

ε− 0
= cos c.

Since | cos θ| is bounded above by M = 1, we have that∣∣∣∣sin εε
∣∣∣∣ ≤ 1,



and so sin ε = O(ε) as ε→ 0.

Another argument for sin ε = O(ε) comes from the well-known limit

lim
ε→0

sin ε

ε
= 1.

Because the limit exists, the function ε−1 sin ε is bounded in a neighbourhood of ε = 0.

So there exists M > 0 such that ∣∣∣∣sin εε
∣∣∣∣ ≤M

for ε in some punctured neighbourhood of 0, and this gives the big oh property.

We can extend the order relations to functions of the form f(t, ε).

Definitions. Let f(t, ε) and g(t, ε) be defined for t in some interval I and for ε is a
(punctured) neighbourhood of 0.

We say f(t, ε) = o(g(t, ε) pointwise on I as ε→ 0 if

lim
ε→0

∣∣∣∣f(t, ε)

g(t, ε)

∣∣∣∣ = 0

We say f(t, ε) = O(g(t, ε)) pointwise on I as ε→ 0 if for each t ∈ I there exists a positive
M(t) such that

|f(t, ε)| ≤M(t)|g(t, ε)|

for all ε in some (punctured) neighbourhood of 0.

We recall the notion of uniform convergence in the context of functions of the form h(t, ε).

Let h(t, ε) be defined for t in some interval I, and ε in a (punctured) neighbourhood of
0.

We write
lim
ε→0

h(t, ε) = 0 uniformly on I

and say h converges uniformly to 0 on I as ε → 0, if for every η > 0 there exist ε0 > 0
such that

|h(t, ε)| < η

for all t ∈ I whenever |ε| < ε0.

Typically to prove that h(t, ε) → 0 uniformly on I, we find a function H(ε) such that
|h(t, ε)| ≤ H(ε) for all t ∈ I and H(ε)→ 0 as ε→ 0.

We say that f(t, ε) = o(g(t, ε)) uniformly on I as ε→ 0 if the limit is uniform on I.

We say that f(t, ε) = O(g(t, ε)) uniformly on I is there exists a bounded positive function
M : I → R such that

|f(t, ε)| ≤M(t)|g(t, ε)|

for all ε in a (punctured) neighbourhood of 0.



A function ya(t, ε) is a uniformly valid asymptotic approximation to a function
y(t, ε) on an interval I as ε → 0 if the error E(t, ε) = y(t, ε) − ya(t, ε) converges to 0
uniformly on I as ε→ 0.

We use the little oh and big oh notions to quantify the rate at which the error goes to
zero of a uniformly valid asymptotic approximation as in E(t, ε) = o(εn) uniformly on I
as ε→ 0, or as in E(t, ε) = O(εn) uniformly on I as ε→ 0, for some n.

Example 3.4. The first three terms of the Taylor series expansion of

y(t, ε) = e−tε, t > 0, ε� 1

give an approximation

ya(t, ε) = 1− tε+
t2ε2

2
.

The error is

E(t, ε) = e−tε − 1 + tε− t2ε2

2
= −t

3ε3

3!
+
t4ε4

4!
− · · ·.

We have that

|E(t, ε)| ≤ t3ε3

3!
+
t4ε4

4!
+ · · ·.

For a fixed T > 0, if we let M = exp(T ), then for all t ∈ [0, T ] and all ε < 1 we have∣∣∣∣E(t, ε)

ε3

∣∣∣∣ =
t3

3!
+
t4ε

4!
+ · · · ≤ T 3

3!
+
T 4

4!
+ · · · ≤M.

Thus E(t, ε) = O(ε3) uniformly on I = [0, T ] as ε→ 0.

However we do not have E(t, ε) = O(ε3) uniformly on [0,∞) as ε → 0 because for any
ε > 0 we can choose t = ε−1 for which

E(t, ε) = e−1 − 1 + 1− 1

2
= e−1 − 1

2

which is not small.
The difficulty in directly applying the order relations to approximate solutions of a dif-
ferential equation is when the exact solutions of the differential equation are not known.

We can, however, indirectly make a comparison.

For an approximate solution ya(t, ε) of a differential equation F (t, y, y′, y′′, . . . , ε) = 0 we
form the residual error

r(t, ε) = F (t, y′a(t, ε), y
′′
a(t, ε), . . . , ε).

We say that the approximate solution ya(t, ε) satisfies the differential equation uniformly
for t ∈ I as ε→ 0 if

r(t, ε)→ 0

uniformly on I as ε→ 0.



Example 3.6. Consider the IVP

y′′ + (y′)2 + εy = 0, y(0) = 0, y′(0) = 1

for t > 0 and ε� 1.

Substitution of the perturbation series y = y0 + εy1 + ε2y2 + · · · into the ODE gives the
IVP

y′′0 + (y′0)
2 = 0, y0(0) = 0, y′0(0) = 1.

Solving this gives
y0(t) = ln(t+ 1),

so that the residual error of y0 is

r(t, ε) = y′′0 + (y′0)
2 − εy0 = ε ln(t+ 1).

Thus r(t, ε) = O(ε) as ε→ 0 uniformly on I = [0, T ] for finite T because

|ε ln(t+ 1)| ≤ ε ln(T + 1),

but not uniformly on [0,∞) because ln(t+ 1)→∞ as t→∞.

Asymptotical Expansions. Application of the regular perturbation method produces
an expansion

y0(t) + εy1(t) + ε2y2(t) + · · ·
of a solution, the first few terms of which give an approximate solution.

A general expansion has the form

φ0(ε)y0(t) + φ1(ε)y1 + φ2(ε)y2 + · · ·

where {φn}∞n=0 is a sequence of functions, such as φn(ε) = (εr)n for some r > 0.

To formalize what is meant by asymptotic in such an expansion we consider how the
functions gn(t, ε) = φn(t)yn(t) are related to each other.

A sequence of gauge functions {gn(t, ε)} is called an asymptotic sequence as ε→ 0 for
t ∈ I if for each n = 0, 1, 2, . . . we have

gn+1(t, ε) = o(gn(t, ε)) as ε→ 0.

For a function y(t, ε) and an asymptotic sequence {gn(t, ε)}, the formal series

∞∑
n=0

angn(t, ε)

for constants an, is said to be an asymptotic expansion of y(t, ε) as ε→ 0 if for every
N ≥ 0 we have

y(t, ε)−
N∑
n=0

angn(t, ε) = o(gN(t, ε)) as ε→ 0.

If the limits cited here are uniform on I, then we say uniform asymptotic sequence and
uniform asymptotic expansion.


