Math 521 Lecture \#20
§3.2.3: Boundary Layers
We again consider the perturbed boundary value problem

$$
\begin{aligned}
& \epsilon y^{\prime \prime}+(1+\epsilon) y^{\prime}+y=0,0<x<1,0<\epsilon \ll 1 \\
& y(0)=0, y(1)=1 .
\end{aligned}
$$

Recall that substitution of the regular perturbation series

$$
y(x)=y_{0}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}(x)+\cdots
$$

into the BVP led to the first-order BVP

$$
y_{0}^{\prime}+y_{0}=0, y_{0}(0)=0, y_{0}(1)=1
$$

which had no solution.
This first-order BVP has a different character than the original second-order BVP.
When this occurs, we should be suspicious of the regular perturbation method.
Since the second-order ODE is linear, we can explicitly solve the second-order BVP and find a modification to the regular perturbation method that will give a good approximation.

The explicit solution of the second-order BVP is

$$
y(x)=\frac{e^{-x}-e^{-x / \epsilon}}{e^{-1}-e^{-1 / \epsilon}} .
$$

Here is the graph of this solution for $\epsilon=0.07$.


From this graph we see what the issue is: the solution $y(x)$ is changing very rapidly near $x=0$, so the term

$$
\epsilon \frac{d^{2} y}{d y^{2}}
$$

in the second-order ODE, is not small when $\epsilon$ is small.
The small interval where $y(x)$ is experiencing this rapid change is called a boundary layer.
The solution $y(x)$ changes more slowly away from $x=0$, on a much larger interval called the outer layer.

This difference in the behavior of $y$ between the boundary layer and the outer layer indicates that two spatial scales in $x$ are needed, one for each layer.
To determined an appropriate scaling in the outer layer, we investigate the terms in the ODE that involve $\epsilon$, namely $y^{\prime \prime}$ and $y^{\prime}$.

These derivative of the solution of the BVP are

$$
\begin{aligned}
y^{\prime}(x) & =\frac{-e^{-x}+\epsilon^{-1} e^{-x / \epsilon}}{e^{-1}-e^{-1 / \epsilon}} \\
y^{\prime \prime}(x) & =\frac{e^{-x}-\epsilon^{-2} e^{-x / \epsilon}}{e^{-1}-e^{-1 / \epsilon}}
\end{aligned}
$$

For $x=O(1)$, i.e, far away from the boundary layer, say $x=1 / 2$, we have

$$
y^{\prime}(1 / 2)=\frac{-e^{1 / 2}+\epsilon^{-1} e^{-1 / 2 \epsilon}}{e^{-1}-e^{-1 / \epsilon}}
$$

This is $O(1)$ because

$$
\lim _{\epsilon \rightarrow 0}\left|\frac{-e^{1 / 2}+\epsilon^{-1} e^{-1 / 2 \epsilon}}{e^{-1}-e^{-1 / \epsilon}}\right|=\left|\frac{e^{-1 / 2}}{e^{-1}}\right| .
$$

The second derivative value

$$
y^{\prime \prime}(1 / 2)=\frac{e^{-1 / 2}-\epsilon^{-2} e^{-1 / 2 \epsilon}}{e^{-1}-e^{-1 / \epsilon}}
$$

is $O(1)$ because

$$
\lim _{\epsilon \rightarrow 0}\left|\frac{e^{-1 / 2}-\epsilon^{-2} e^{-1 / 2 \epsilon}}{e^{-1}-e^{-1 / \epsilon}}\right|=\left|\frac{\epsilon^{-1 / 2}}{e^{-1}}\right| .
$$

Thus the terms $\epsilon y^{\prime \prime}(x)$ and $\epsilon y^{\prime}(x)$ are small in the outer layer and can be safely ignored for small $\epsilon$ along with the boundary condition $y(0)=0$ that is not in the outer layer.

Thus no scaling of $x$ is needed, and the IVP we obtain by setting $\epsilon=0$ is

$$
y^{\prime}+y=0, y(1)=0
$$

whose solution $y_{o}(x)=e^{1-x}$ for $x=O(1)$ is an approximation of $y(x)$ in the outer layer, or an outer approximation.

Here is the graph of $y_{o}(x)$ with $y(x)$ for $\epsilon=0.07$.


To determine the appropriate spatial scale for the boundary layer, we investigate the second derivative of the solution of the BVP:

$$
y^{\prime \prime}(x)=\frac{e^{-x}-\epsilon^{-2} e^{-x / \epsilon}}{e^{-1}-e^{-1 / \epsilon}}
$$

For $\epsilon$ small and $x$ close to 0 , say $x=\epsilon$, we have

$$
y^{\prime \prime}(\epsilon)=\frac{e^{-\epsilon}-\epsilon^{-2} e^{-1}}{e^{-1}-e^{-1 / \epsilon}}
$$

What is the order of $y^{\prime \prime}(\epsilon)$ ?
The presence of the $\epsilon^{-2}$ in the numerator of $y(\epsilon)$ suggest that $y(\epsilon)=O\left(\epsilon^{-2}\right)$.
This is indeed the case because

$$
\lim _{\epsilon \rightarrow 0}\left|\frac{\frac{e^{-\epsilon}-\epsilon^{-2} e^{-1}}{e^{-1}-e^{-1 / \epsilon}}}{\epsilon^{-2}}\right|=\lim _{\epsilon \rightarrow 0}\left|\frac{\epsilon^{2} e^{-\epsilon}-e^{-1}}{e^{-1}-e^{-1 / \epsilon}}\right|=1 .
$$

This says that $y^{\prime \prime}$ is very large in the boundary layer, so that $\epsilon y^{\prime \prime}$ is not small (as would be needed for the regular perturbation method to succeed).
In particular, we have $\epsilon y^{\prime \prime}(\epsilon)=O\left(\epsilon^{-1}\right)$ because

$$
\lim _{\epsilon \rightarrow 0}\left|\frac{\epsilon y^{\prime \prime}(\epsilon)}{\epsilon^{-1}}\right|=\lim _{\epsilon \rightarrow 0}\left|\frac{\epsilon e^{-\epsilon}-\epsilon^{-1} e^{-1}}{\epsilon^{-1}}\right|=\lim _{\epsilon \rightarrow 0}\left|\frac{\epsilon^{2} e^{-\epsilon}-e^{-1}}{e^{-1}-e^{-1 / \epsilon}}\right|=1 .
$$

This says that the $\epsilon$ in $\epsilon y^{\prime \prime}$ does not reflect the magnitude of order of this term.
We will show in the next lecture that through dominant balancing, an appropriate scaling of $x$ in the boundary layer is given by $\xi=x / \epsilon$.

For now, with $\epsilon$ close to 0 , the term $e^{-1 / \epsilon}$ in the solution $y(x)$ is close to 0 , so that

$$
y(x) \approx \frac{e^{-x}-e^{-x / \epsilon}}{e^{-1}}=e^{1-x}-e^{1-x / \epsilon}
$$

For $x$ in the boundary layer, i.e., close to 0 or $x=O(1 / \epsilon)$, we have that

$$
y(x) \approx e-e^{1-x / \epsilon}
$$

This approximate solution captures the rapid changes in $y$ in the boundary layer, and is called the inner approximation and denoted by $y_{i}(x)$.
Here is a graph of $y(x), y_{o}(x)$, and $y_{i}(x)$ for $\epsilon=0.07$.


