
Math 521 Lecture #22
§3.3.3: Uniform Approximations

Recall for the boundary value problem,

εy′′ + (1 + ε)y′ + y = 0, 0 < x < 1, 0 < ε� 1,

y(0) = 0, y(1) = 1,

that we obtained in the boundary layer near x = 0 the inner approximation

yi(x) = e(1− e−x/ε) = e− e1−x/ε, x = O(ε),

and in the outer layer the outer approximation

yo(x) = e1−x, x = O(1).

We show how to combine these approximations into one uniform approximation on [0, 1]
of the exact solution

y(x, ε) =
e−x − e−x/ε

e−1 − e−1/ε
≈ e−x − e−x/ε

e−1
= e1−x − e1−x/ε.

In the overlap domain, both the inner and outer approximations are roughly equal to e,
the common limit of the matching condition,

lim
ε→0+

y0(
√
εη) = lim

ε→0+
yi(
√
εη)

for fixed value of the intermediate variable η = x/
√
ε.

Naively adding the inner and outer approximations together gives

yi(x) + yo(x) = e1−x + e− e1−x/ε

which implies that approximately

2e− e1−x/ε for x = O(ε) and e1−x + e for x = O(1).

Each of these is off by the common limit of the matching condition.

To fix this, we subtract the common limit of the matching condition from the sum of the
inner and outs approximations to obtain

yu(x, ε) = yi(x) + y0(x)− e = e1−x − e1−x/ε.

This approximation is actually a solution of the ODE because

εy′′u + (1 + ε)y′u + yu

= ε(e1−x − ε−2e1−x/ε) + (1 + ε)(−e1−x + ε−1e1−x/ε) + e1−x − e1−x/ε

= 0.



The approximation yu(x, ε) satisfies the boundary condition y(0) = 0 exactly, while for
the other boundary condition we have

yu(1, ε) = 1− e1−1/ε ≈ 1.

Is yu(x, ε) a uniformly valid asymptotic approximation of y(x, ε) on I = [0, 1] as ε→ 0+?

It is because (as shown in the Appendix) we have E(x, ε) = O(e−1/ε) uniformly on I as
ε→ 0+.

Here are the graphs of the exact solution y(x, ε) (red or upper curve) and the uniform
approximation yu(x, ε) (blue or lower curve) for ε = 0.25.

We used the not so small value of ε = 0.25 to see the difference between the exact and
approximate solutions because the rate of convergence has order e−1/ε which is super fast
(faster than any polynomial in ε, see Appendix).

Using ε = 0.07 we cannot see the difference between the exact and the approximate
solutions at the scale of the graphs.

Example. Use singular perturbation methods to find a uniformly valid approximation
to the problem

εy′′ + y′ = 2x, 0 < x < 1, 0 < ε� 1,

y(0) = 1, y(1) = 1.

The general solution of the unperturbed ODE y′ = 2x is y = x2 +C which cannot satisfy
both boundary conditions.

Consequently we assume a boundary layer at x = 0 and an outer layer that includes
x = 1.

The boundary condition y(1) = 1 belongs to the outer layer, which implies that an outer
approximation is

yo(x) = x2, x = O(1).



We assume that the width of the boundary layer has the form δ(ε) and rescale near x = 0
by

ξ =
x

δ(ε)
, Y (ξ) = y(δ(ε)ξ).

With this scaling the ODE becomes

ε

δ(ε)2
Y ′′(ξ) +

1

δ(ε)
Y ′(ξ) = 2δ(ε)ξ.

We look for a dominant balance that reflects the order of magnitudes of the terms in the
ODE.

If ε/δ(ε)2 ∼ 2δ(ε) is the dominant balance, then δ(ε) = O(ε1/3).

This implies that the coefficient 1/δ(ε) = O(e−1/3) is not small when compared with the
assumed dominant coefficients.

If instead, ε/δ(ε)2 ∼ 1/δ(ε) is the dominant balance, then δ(ε) = O(ε).

This implies that the coefficient 2δ(ε) = O(ε) which is small when compared with domi-
nant coefficients ε/δ(ε) and 1/δ(ε) each of which are O(ε−1).

We therefore choose δ(ε) = ε which gives a consistent scaling of the ODE, i.e., the
coefficient reflect the order of magnitude of the corresponding terms.

The ODE becomes
Y ′′(ξ) + Y ′(ξ) = 2ε2ξ

so the inner approximation Yi satisfies

Y ′′i + Y ′i = 0.

Solving this gives
Yi(ξ) = C1 + C2e

−ξ,

or in terms of the variables x and y,

yi(x) = C1 + C2e
−x/ε.

The boundary condition y(0) = 1 implies that C1 = 1− C2, so that

yo(x) = (1− C2) + C2e
−x/ε.

In an overlap domain of order
√
ε and an appropriate intermediate scaled variable η =

x/
√
ε, the matching condition (that determines the value of C2) for fixed η is

0 = lim
ε→0+

εη2 = lim
ε→0+

y0(
√
εη) = lim

ε→0+
yi(
√
εη) = lim

ε→0+

[
(1− C2) + C2e

−η/
√
ε
]

= 1− C2.

This gives C2 = 1 and an inner approximation of yi(x) = e−x/ε, x = O(ε).

A uniform composite approximation is inner plus outer minus the common limit in the
overlap domain:

yu(x) = x2 + e−x/ε − 0 = x2 + e−x/ε.

Here are the graphs of the exact solution (the red or upper curve) and the uniformly
valid approximation yu(x) (the blue or lower curve) when ε = 0.05.



Appendix. Calculation of the rate of uniform convergence of the approximation as
ε→ 0+.

The error function for the approximation yu(x, ε) is

E(x, ε) = y(x, ε)− yu(x, ε)

=
e−x − e−x/ε

e−1 − e−1/ε
− e−x − e−x/ε

e−1

=
(
e−x − e−x/ε

)( 1

e−1 − e−1/ε
− 1

e−1

)
=

(
e−x − e−x/ε

)( e−1/ε

(e−1 − e−1/ε)e−1

)
= y(x, ε)e1−1/ε.

For each 0 < ε� 1, the continuous nonnegative function y(x, ε) has one critical point in
the compact [0, 1] at which is achieves its maximum value of

ymax(ε) = y

(
− ln ε

1
ε
− 1

, ε

)
=

1

e−1 − e−1/ε

(
exp

(
ln ε

1
ε
− 1

)
− exp

(
ln ε

1− ε

))
.

This implies that for each 0 < ε� 1 that y(x, ε) ≤ ymax(ε) for all x ∈ [0, 1].

Since

lim
ε→0+

ln ε
1
ε
− 1

= lim
ε→0+

1/ε

−1/ε2
= 0, lim

ε→0+

ln ε

1− ε
= −∞,

we have that
lim
ε→0+

ymax(ε) = e.

For sufficiently small ε we then have that y(x, ε) ≤ 2e for all x ∈ [0, 1].



Thus we obtain
|E(x, ε)| ≤ (2e)e1−1/ε = (2e2)e−1/ε

which implies uniformly on [0, 1] that

E(x, ε) = O(e−1/ε) as ε→ 0+.

Thus yu(x, ε) is a uniformly valid asymptotic approximation of y(x, ε) on [0, 1] as ε→ 0+.

To understand what this rate of convergence is, we compare with O(εn).

For any positive integer n we have (with α = 1/ε) that

lim
ε→0+

e−1/ε

εn
= lim

ε→0+

e−1/ε

εn
= lim

α→∞
αne−α = 0.

This implies for each n ∈ N that E(x, ε) = o(εn) as ε → 0+, so that E(x, ε) = O(εn) as
ε→ 0+.


