
Math 521 Lecture #23
§3.3.4: General Procedures

The single boundary layers we have explored so far have occurred the left endpoint of
the interval.

Boundary layers may occur at other points in an interval, with even several boundary
layers in one interval.

When the boundary layer occurs at the right endpoint of the interval, the boundary layer
analysis is identical, except for two things.

If b is the right endpoint of the interval, the scale transformation to define the inner
variable is the different

ξ =
b− x
δ(ε)

.

The function Y (ξ) is accordingly defined by Y (ξ) = y(b− δ(ε)ξ).
This implies that the first derivatives have a different relationship,

dy

dt
= − 1

δ(ε)

dY

dξ
,

while the second derivatives have the same relationship,

d2y

dt2
=

1

δ(ε)2
d2Y

dξ2
.

The matching condition at a right boundary layer is

lim
ξ→∞

Yi(ξ) = lim
x→b−

yo(x).

The singular perturbation method is not universal: for some classes of differential equa-
tions it works well, while for other classes it the needed modifications can be significant.

We present one class of second-order BVPs to which the singular perturbation method
applies, for which the boundary layer can be completely characterized, thus enabling a
uniformly valid asymptotic approximation.

Theorem 3.12. Suppose p(x) and q(x) are continuous on [0, 1] with p(x) > 0. For the
boundary value problem

εy′′ + p(x)y′ + q(x)y = 0, 0 < x < 1, 0 < ε� 1,

y(0) = a, y(1) = b,

there exists a boundary layer at x = 0 with inner approximation

yi(x) = C1 + (a− C1) exp

(
−p(0)x

ε

)
and outer approximation

yo(x) = b exp

(∫ 1

x

q(s)

p(s)
ds

)
,



where

C1 = b exp

(∫ 1

0

q(s)

p(s)
dx

)
.

The function

yu(x) = yi(x) + yo(x)− C1 = (C1 − a) exp

(
−p(0)x

ε

)
+ b exp

(∫ 1

x

q(s)

p(s)
ds

)
is a uniformly valid asymptotic expansion, where, for y(x) the exact solution, we have
y(x)− yu(x) = O(ε) uniformly on [0, 1] as ε→ 0.

Proof. We show that the assumption of a boundary layer at x = 0 is consistent and leads
to the outer and inner approximations above.

If the boundary layer is at x = 0, then the outer approximation yo(x) will satisfy

p(x)y′o + q(x)yo = 0, y(1) = b.

Separating variables gives
dyo
yo

= −q(x)

p(x)
dx.

Integrating over the interval [x, 1] and using yo(1) = b and p(x) > 0 gives

ln |b| − ln |y0(x)| = −
∫ 1

x

q(s)

p(s)
ds.

Solving for yo(x) gives

y0(x) = b exp

(∫ 1

x

q(s)

p(s)
ds

)
.

In the boundary layer, we introduce the scaled variable

ξ =
x

δ(ε)

for a yet-to-be determined function δ(ε) with the property that δ(ε)→ 0 as ε→ 0+.

Setting Y (ξ) = y(δ(ε)ξ), the ODE in Y is

ε

δ(ε)2
Y ′′ +

p(δ(ε)ξ)

δ(ε)
Y ′ + q(δ(ε)ξ)Y = 0.

As ε→ 0+, the coefficients in this ODE behave like

ε

δ(ε)2
,
p(0)

δ(ε)
, q(0)

by the continuity of p and q at x = 0.

The dominant balance here is ε/δ(ε)2 ∼ p(0)/δ(ε), which implies that δ(ε) = O(ε) as
ε→ 0+.



We can therefore choose δ(ε) = ε.

The ODE the becomes
Y ′′ + p(εξ)Y ′ + εq(εξ)Y = 0.

The inner approximation Yi then satisfies

Y ′′i + p(0)Y ′i = 0.

The general solution of this is

Yi(ξ) = C1 + C2e
−p(0)ξ.

The boundary condition y(0) = a becomes Yi(0) = a, so that

a = C1 + C2.

Thus the inner approximation is

Yi(ξ) = C1 + (a− C1)e
−p(0)ξ.

Back in original variables, the inner approximation is

yi(x) = C1 + (a− C1) exp

(
−p(0)x

ε

)
.

For the matching condition, we use the intermediate variable η = x/
√
ε in an overlap

domain.

For fixed η, the matching condition is

lim
ε→0+

yi(
√
εη) = lim

ε→0+
yo(
√
εη).

Filling this in gives

lim
ε→0+

[
C1 + (a− C1) exp

(
− p(0)η√

ε

)]
= lim

ε→0+
b exp

(∫ 1

√
εη

q(s)

p(s)
ds

)
.

This forces

C1 = b exp

(∫ 1

0

q(s)

p(s)
ds

)
.

The proof that the approximation

yu(x) = yi(x) + yo(x)− C1 = (a− C1) exp

(
−p(0)x

ε

)
+ b exp

(∫ 1

x

q(s)

p(s)
ds

)
satisfies y(x)− yu(x) = O(ε) is beyond this course. �


