
Math 521 Lecture #24
§3.4.1: Damped Mass-Spring Systems

Initial value problems with a small parameter may also have boundary layers, which are
called initial layers.

We will illustrate an initial layer for a damped mass-spring system.

Let y be the displacement of the object of mass m from its equilibrium position.

We assume that the forces acting on the object are

Fspring = −ky, Fdamping = −aẏ,

for positive constants k and a.

The model for the position of the object in the mass-spring system is

mÿ + aẏ + ky = 0, t > 0.

Assuming the initial displacement is 0, we put the object into motion by imparting a
positive impulse I.

This means that the initial conditions are

y(0) = 0, mẏ(0) = I.

What happens when m is very small?

To investigate the initial layer at t = 0, we put the IVP into dimensionless form.

The dimensions of the four parameters in the IVP are

[m] = M, [a] = MT−1, [k] = MT−2, [I] = MLT−1.

From these there are three time scales,
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Because we are assuming m� 1, we have that m/a� 1,
√
m/k � 1, I/

√
km� 1, and

aI/km� 1.

Such relations are needed when determining appropriate scales for the independent and
dependent variables, because the scales should be chosen so that these variables in scaled
form both have order 1.



Before we make the choice of scales, we first analyze the motion of the object.

Because m is small the impulse I will impart a large initial velocity, so there is a rapid
change in the displacement to a maximum value, at which point the spring will cause the
displacement to return to 0.

With m small, the mass-spring system is overdamped, i.e., a2 − 4km > 0, and there will
be no oscillations in the displacement.

Here is the graph of the solution for m = 0.1, a = 1, k = 1, and I = 0.1.

The quick rise followed by a gentle decay suggests two time scales are needed.

Near t = 0 we have what is called an initial layer, where the value of y is rapidly
changing and a short time scale is needed.

In the outer layer, a time scale of order 1 seems appropriate.

The IVP has the characteristics of a singular perturbation problem: multiple time scales
and a small quantity multiplying the highest order derivative.

Looking at the inner layer, either of the time scales m/a or
√
m/k may be suitable since

m is small.

The choice of
√
m/k is poor because for small y the spring force ky is not a dominant

term.

A good choose would be m/a because the damping force ay′ is dominant term in initial
layer where y′ is large.

The term my′′ is also dominant in the initial layer.

Looking at the possible displacement scales for the outer layer, the only one that seems
suitable is I/a because the other two are large in comparison with the maximum dis-
placement.



Looking at the possible time scales for the outer layer, only the third one a/k is suitable
because it is of first order, while the other two are of smaller order.

For the outer layer the scalings we use to non dimensionless the IVP are
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The scaled variable t̄ and ȳ are both of order 1.

In the scaled variables, the IVP becomes

εȳ′′ + ȳ′ + ȳ = 0,

ȳ(0) = 0, εȳ′(0) = 1,

where the prime means differentiation with respect to t̄, and ε = mk/a2 � 1.

With this scaling the small term εȳ′′ occurs where we expect it, in the inertia term.

By singular perturbation, the leading order approximation in the outer layer is obtained
by setting ε = 0, i.e.,

ȳ′ + ȳ = 0.

We do not include either initial condition because they lie in the initial layer.

The outer approximation is ȳ0(x) = Ce−t̄.

To obtain an inner approximation we rescale according to

τ =
t̄

δ(ε)
, Y (τ) = ȳ(δ(ε)τ).

Then the scaled ODE becomes

ε
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δ(ε)
Y ′(τ) + Y (τ) = 0.

The dominant balance is ε/δ(ε)2 ∼ 1/δ(ε) which gives the width of the initial layer as
δ(ε) = O(ε).

The other balance ε/δ(ε)2 ∼ 1 implies δ(ε) = O(
√
ε) which implies the inconsistency of

1/δ(ε) not being small.

Setting δ(ε) = ε the ODE becomes

Y ′′(τ) + Y ′(τ) + εY (τ) = 0.

The leading order approximation gives the inner approximation of

Y (τ) = A+Be−τ .

Returning to t̄ and ȳ variables, we have

ȳ(t̄) = A+Be−t̄/ε.



The initial condition y(0) = 0 implies that ȳ(0) = 0, so that B = −A.

The other initial condition εȳ′(0) = 1 implies that B = −1.

The inner approximation is ȳi(t̄) = 1− e−t̄/ε.
We use matching to determine the value of the arbitrary constant C in the outer approx-
imation.

We could pass to an intermediate scale η = t̄/
√
ε to express the matching condition.

Instead we use simpler equivalent matching condition:

C = lim
t̄→0+

ȳ0(t̄) = lim
τ→∞

Y (τ) = A = 1.

Then a uniformly valid approximation is

ȳu(t̄) = yo(x) + yi(x)− common limit = e−t̄ − e−t̄/ε.

Returning to the original variables we obtain the uniformly valid approximation

yu(t) =
I(e−kt/a − e−at/m)

a
.

For t in the initial layer we have

yu(t) ≈
I(1− e−at/m)

a
,

which describes a rapidly increasing function with a time scale of m/a, in agreement with
the time scale we thought would be appropriate in the initial layer.

For t away from 0, in the outer layer, we have

yu(t) ≈
Ie−kt/a

a
,

which describes a slowing decaying function on a time scale of a/k, in agreement with
the time scale we though would be appropriate in the outer layer.


