
Math 521 Lecture #26
§3.5: The WKB Approximation, Part II

Recall singularly perturbed equation ε2y′′ + q(x)y = 0 we obtained from the time-
independent Schrödinger equation where q(x) = E − V (x).

There are two cases to consider: the classical or oscillatory case when q(x) > 0 on some
interval, and the non-classical or exponential case when q(x) < 0 on some interval.

The Nonoscillatory Case. To be explicit about q(x) < 0 for x on some interval I,
we write q(x) = −k(x)2 where k(x) > 0, so that the equation becomes

ε2y′′ − k(x)2y = 0.

If k(x) were a constant k0, then the solutions of εy′′ − k0y = 0 would be real, rapidly
increasing or decreasing exponential solutions of the form

exp

(
±k0x

ε

)
.

This suggests making the substitution

y = exp

(
u(x)

ε

)
in the ODE to get an ODE in u(x).

Since

y′(x) =
u′(x)

ε
exp

(
u(x)

ε

)
,

y′′(x) =
u′′(x)

ε
+

(
u′(x)

ε

)2

exp

(
u(x)

ε

)
,

the ODE becomes

εu′′(x) exp

(
u(x)

ε

)
+ (u′(x))2 exp

(
u(x)

ε

)
− k(x)2 exp

(
u(x)

ε

)
= 0.

Elimination the common exponential and setting v = u′ gives

εv′ + v2 − k(x)2 = 0.

We substitute into the ODE the regular perturbation series

v(x) = v0(x) + εv1(x) +O(ε2)

to get for the leading-order, or O(1), term and first corrective, or O(ε), term,

v20 − k(x)2 = 0, v′0 + 2v0v1 = 0.



Solving these gives

v0(x) = ±k(x), v1 = − k
′(x)

2k(x)
.

Thus we have the asymptotical expansion

v(x) = ±k(x)− ε k
′(x)

2k(x)
+O(ε2).

Since v′ = u, integrating of the asymptotic expansion for v(x) gives an asymptotic
expansion

u(x) = ±
∫ x

a

k(ξ) dξ − ε

2
ln k(x) +O(ε2),

where a is an arbitrary constant.

Returning to the original dependent variable y = exp(u(x)/ε) we have an asymptotic
expansion

y(x) = exp

(
±1

ε

∫ x

a

k(ξ) dξ − ln k(x)

2
+O(ε)

)
=

1√
k(x)

exp

(
±1

ε

∫ x

a

k(ξ) dξ

)
+O(ε).

We have here two linearly independent approximations (one with the choice of + in ±,
the other with the choice of −).

The arbitrary linear combination of these gives the WKB approximation in the nonoscil-
latory case:

yWKB(x) =
c1√
k(x)

exp

(
1

ε

∫ x

a

k(ξ) dξ

)
+

c2√
k(x)

exp

(
−1

ε

∫ x

a

k(ξ) dξ

)
.

Example 3.14. Find the WKB approximation for

ε2y′′ − (1 + x)2y = 0, x > 0.

Here we have k(x) = 1 + x, so that∫ x

0

(1 + ξ)dξ = x+
x2

2
.

The WKB approximation is

yWKB(x) =
c1√

1 + x
exp

(
x+ x2/2

ε

)
+

c2√
1 + x

exp

(
−x+ x2/2

ε

)
.

Equivalently we can write

yWKB(x) =
c1√

1 + x
cosh

(
x+ x2/2

ε

)
+

c2√
1 + x

sinh

(
−x+ x2/2

ε

)
.



The Oscillatory Case. Now we assume that q(x) > 0 on some interval I, and explicitly
write q(x) = k(x)2 for k(x) > 0.

Similar to non-oscillatory case, the substitution y = exp(iu(x)/ε) leads to a second-order
equation in u to which we apply the regular perturbation method.

This gives the WKB approximation in the oscillatory case to be

yWKB(x) =
c1√
k(x

exp

(
i

ε

∫ x

a

k(ξ) dξ

)
+

c2√
k(x)

exp

(
− i
ε

∫ x

a

k(ξ) dξ

)
.

This can be written equivalently as

yWKB(x) =
c1√
k(x

cos

(
1

ε

∫ x

a

k(ξ) dξ

)
+

c2√
k(x)

sin

(
−1

ε

∫ x

a

k(ξ) dξ

)
.

Example 3.15. For the time-independent Schrödinger equation,

− ~2

2m
y′′ +

(
V (x)− E

)
y = 0

in the classical or oscillatory setting of E − V (x) > 0, we have (by a trig identity the
combines the linear combination of cos and sin into one cos) the WKB approximation

yWKB(x) =
A

(E − V (x))1/4
cos

(√
2m

~

∫ x

a

√
E − V (ξ) dξ + φ

)

where A is the amplitude and φ is the phase.

Another application of the WKB approximation is the determination of large “eigenval-
ues” of simple differential equations.

Example 3.16. For a function q(x) > 0, consider the problem of solving the BVP

y′′ + λq(x)y = 0, 0 < x < π,

y(0) = 0, y(π) = 0,

when λ is large, i.e., λ� 1.

A number λ is an eigenvalue of the BVP is there exists a nonzero (or nontrivial) solu-
tion of the BVP for that particular value of λ, and the nontrivial solution is called an
eigenfunction corresponding to that particular value of λ.

By setting ε = 1/
√
λ and k(x) =

√
q(x), the ODE becomes

ε2y′′ + k(x)2y = 0

to which we apply the WKB method when ε is small (or λ is big) to get

yWKB(x) =
1

q(x)1/4

[
c1 cos

(√
λ

∫ x

0

√
q(ξ) dξ

)
+ c2 sin

(√
λ

∫ x

0

√
q(ξ) dξ

)]
.



The boundary condition y(0) = 0 forces c1 = 0.

Then the boundary condition y(π) = 0 forces

0 = c2 sin

(√
λ

∫ π

0

√
q(ξ) dξ

)
.

If c2 = 0, then we would get the zero (or trivial) solution yWKB(x) = 0.

To get c2 6= 0, we must have that

sin

(√
λ

∫ π

0

√
q(ξ) dξ

)
= 0.

This requires that √
λ sinπ0

√
q(ξ) dξ = nπ

for a large positive integer n (to keep in line with large values of λ).

The large eigenvalues of the BVP are given approximately by

λn = n2π2

(∫ π

0

√
q(ξ) dξ

)−2
.

Approximations of the corresponding eigenfunctions are given by taking c2 = 1, i.e.,

yn(x) =
1

q(x)1/4
sin

(
nπ
∫ x
0

√
q(ξ) dξ∫ π

0

√
q(ξ) dξ

)
.


