Math 521 Lecture \#26

§3.5: The WKB Approximation, Part II

Recall singularly perturbed equation $\epsilon^{2} y^{\prime \prime}+q(x) y=0$ we obtained from the timeindependent Schrödinger equation where $q(x)=E-V(x)$.
There are two cases to consider: the classical or oscillatory case when $q(x)>0$ on some interval, and the non-classical or exponential case when $q(x)<0$ on some interval.
The Nonoscillatory Case. To be explicit about $q(x)<0$ for x on some interval I, we write $q(x)=-k(x)^{2}$ where $k(x)>0$, so that the equation becomes

$$
\epsilon^{2} y^{\prime \prime}-k(x)^{2} y=0 .
$$

If $k(x)$ were a constant k_{0}, then the solutions of $\epsilon y^{\prime \prime}-k_{0} y=0$ would be real, rapidly increasing or decreasing exponential solutions of the form

$$
\exp \left(\pm \frac{k_{0} x}{\epsilon}\right)
$$

This suggests making the substitution

$$
y=\exp \left(\frac{u(x)}{\epsilon}\right)
$$

in the ODE to get an ODE in $u(x)$.
Since

$$
\begin{aligned}
& y^{\prime}(x)=\frac{u^{\prime}(x)}{\epsilon} \exp \left(\frac{u(x)}{\epsilon}\right) \\
& y^{\prime \prime}(x)=\frac{u^{\prime \prime}(x)}{\epsilon}+\left(\frac{u^{\prime}(x)}{\epsilon}\right)^{2} \exp \left(\frac{u(x)}{\epsilon}\right),
\end{aligned}
$$

the ODE becomes

$$
\epsilon u^{\prime \prime}(x) \exp \left(\frac{u(x)}{\epsilon}\right)+\left(u^{\prime}(x)\right)^{2} \exp \left(\frac{u(x)}{\epsilon}\right)-k(x)^{2} \exp \left(\frac{u(x)}{\epsilon}\right)=0 .
$$

Elimination the common exponential and setting $v=u^{\prime}$ gives

$$
\epsilon v^{\prime}+v^{2}-k(x)^{2}=0
$$

We substitute into the ODE the regular perturbation series

$$
v(x)=v_{0}(x)+\epsilon v_{1}(x)+O\left(\epsilon^{2}\right)
$$

to get for the leading-order, or $O(1)$, term and first corrective, or $O(\epsilon)$, term,

$$
v_{0}^{2}-k(x)^{2}=0, v_{0}^{\prime}+2 v_{0} v_{1}=0 .
$$

Solving these gives

$$
v_{0}(x)= \pm k(x), \quad v_{1}=-\frac{k^{\prime}(x)}{2 k(x)}
$$

Thus we have the asymptotical expansion

$$
v(x)= \pm k(x)-\epsilon \frac{k^{\prime}(x)}{2 k(x)}+O\left(\epsilon^{2}\right) .
$$

Since $v^{\prime}=u$, integrating of the asymptotic expansion for $v(x)$ gives an asymptotic expansion

$$
u(x)= \pm \int_{a}^{x} k(\xi) d \xi-\frac{\epsilon}{2} \ln k(x)+O\left(\epsilon^{2}\right)
$$

where a is an arbitrary constant.
Returning to the original dependent variable $y=\exp (u(x) / \epsilon)$ we have an asymptotic expansion

$$
\begin{aligned}
y(x) & =\exp \left(\pm \frac{1}{\epsilon} \int_{a}^{x} k(\xi) d \xi-\frac{\ln k(x)}{2}+O(\epsilon)\right) \\
& =\frac{1}{\sqrt{k(x)}} \exp \left(\pm \frac{1}{\epsilon} \int_{a}^{x} k(\xi) d \xi\right)+O(\epsilon)
\end{aligned}
$$

We have here two linearly independent approximations (one with the choice of + in \pm, the other with the choice of -).
The arbitrary linear combination of these gives the WKB approximation in the nonoscillatory case:

$$
y_{W K B}(x)=\frac{c_{1}}{\sqrt{k(x)}} \exp \left(\frac{1}{\epsilon} \int_{a}^{x} k(\xi) d \xi\right)+\frac{c_{2}}{\sqrt{k(x)}} \exp \left(-\frac{1}{\epsilon} \int_{a}^{x} k(\xi) d \xi\right)
$$

Example 3.14. Find the WKB approximation for

$$
\epsilon^{2} y^{\prime \prime}-(1+x)^{2} y=0, x>0
$$

Here we have $k(x)=1+x$, so that

$$
\int_{0}^{x}(1+\xi) d \xi=x+\frac{x^{2}}{2}
$$

The WKB approximation is

$$
y_{W K B}(x)=\frac{c_{1}}{\sqrt{1+x}} \exp \left(\frac{x+x^{2} / 2}{\epsilon}\right)+\frac{c_{2}}{\sqrt{1+x}} \exp \left(-\frac{x+x^{2} / 2}{\epsilon}\right) .
$$

Equivalently we can write

$$
y_{W K B}(x)=\frac{c_{1}}{\sqrt{1+x}} \cosh \left(\frac{x+x^{2} / 2}{\epsilon}\right)+\frac{c_{2}}{\sqrt{1+x}} \sinh \left(-\frac{x+x^{2} / 2}{\epsilon}\right)
$$

The Oscillatory Case. Now we assume that $q(x)>0$ on some interval I, and explicitly write $q(x)=k(x)^{2}$ for $k(x)>0$.
Similar to non-oscillatory case, the substitution $y=\exp (i u(x) / \epsilon)$ leads to a second-order equation in u to which we apply the regular perturbation method.

This gives the WKB approximation in the oscillatory case to be

$$
y_{W K B}(x)=\frac{c_{1}}{\sqrt{k(x}} \exp \left(\frac{i}{\epsilon} \int_{a}^{x} k(\xi) d \xi\right)+\frac{c_{2}}{\sqrt{k(x)}} \exp \left(-\frac{i}{\epsilon} \int_{a}^{x} k(\xi) d \xi\right) .
$$

This can be written equivalently as

$$
y_{W K B}(x)=\frac{c_{1}}{\sqrt{k(x}} \cos \left(\frac{1}{\epsilon} \int_{a}^{x} k(\xi) d \xi\right)+\frac{c_{2}}{\sqrt{k(x)}} \sin \left(-\frac{1}{\epsilon} \int_{a}^{x} k(\xi) d \xi\right) .
$$

Example 3.15. For the time-independent Schrödinger equation,

$$
-\frac{\hbar^{2}}{2 m} y^{\prime \prime}+(V(x)-E) y=0
$$

in the classical or oscillatory setting of $E-V(x)>0$, we have (by a trig identity the combines the linear combination of cos and sin into one cos) the WKB approximation

$$
y_{W K B}(x)=\frac{A}{(E-V(x))^{1 / 4}} \cos \left(\frac{\sqrt{2 m}}{\hbar} \int_{a}^{x} \sqrt{E-V(\xi)} d \xi+\phi\right)
$$

where A is the amplitude and ϕ is the phase.
Another application of the WKB approximation is the determination of large "eigenvalues" of simple differential equations.
Example 3.16. For a function $q(x)>0$, consider the problem of solving the BVP

$$
\begin{aligned}
& y^{\prime \prime}+\lambda q(x) y=0,0<x<\pi, \\
& y(0)=0, y(\pi)=0,
\end{aligned}
$$

when λ is large, i.e., $\lambda \gg 1$.
A number λ is an eigenvalue of the BVP is there exists a nonzero (or nontrivial) solution of the BVP for that particular value of λ, and the nontrivial solution is called an eigenfunction corresponding to that particular value of λ.
By setting $\epsilon=1 / \sqrt{\lambda}$ and $k(x)=\sqrt{q(x)}$, the ODE becomes

$$
\epsilon^{2} y^{\prime \prime}+k(x)^{2} y=0
$$

to which we apply the WKB method when ϵ is small (or λ is big) to get

$$
y_{W K B}(x)=\frac{1}{q(x)^{1 / 4}}\left[c_{1} \cos \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{q(\xi)} d \xi\right)+c_{2} \sin \left(\sqrt{\lambda} \int_{0}^{x} \sqrt{q(\xi)} d \xi\right)\right] .
$$

The boundary condition $y(0)=0$ forces $c_{1}=0$.
Then the boundary condition $y(\pi)=0$ forces

$$
0=c_{2} \sin \left(\sqrt{\lambda} \int_{0}^{\pi} \sqrt{q(\xi)} d \xi\right)
$$

If $c_{2}=0$, then we would get the zero (or trivial) solution $y_{W K B}(x)=0$.
To get $c_{2} \neq 0$, we must have that

$$
\sin \left(\sqrt{\lambda} \int_{0}^{\pi} \sqrt{q(\xi)} d \xi\right)=0
$$

This requires that

$$
\sqrt{\lambda} \sin _{0}^{\pi} \sqrt{q(\xi)} d \xi=n \pi
$$

for a large positive integer n (to keep in line with large values of λ).
The large eigenvalues of the BVP are given approximately by

$$
\lambda_{n}=n^{2} \pi^{2}\left(\int_{0}^{\pi} \sqrt{q(\xi)} d \xi\right)^{-2}
$$

Approximations of the corresponding eigenfunctions are given by taking $c_{2}=1$, i.e.,

$$
y_{n}(x)=\frac{1}{q(x)^{1 / 4}} \sin \left(\frac{n \pi \int_{0}^{x} \sqrt{q(\xi)} d \xi}{\int_{0}^{\pi} \sqrt{q(\xi)} d \xi}\right)
$$

