Math 521 Lecture #26
63.5: The WKB Approximation, Part II

Recall singularly perturbed equation €%y” + g(z)y = 0 we obtained from the time-
independent Schrédinger equation where ¢(x) = E — V().

There are two cases to consider: the classical or oscillatory case when ¢(z) > 0 on some
interval, and the non-classical or exponential case when ¢(x) < 0 on some interval.

The Nonoscillatory Case. To be explicit about g(x) < 0 for  on some interval I,
we write q(x) = —k(x)? where k(z) > 0, so that the equation becomes

y" — k(z)*y = 0.

If k(x) were a constant kg, then the solutions of ey” — koy = 0 would be real, rapidly
increasing or decreasing exponential solutions of the form

k
exp <iﬁ> .
€

This suggests making the substitution

e ()

in the ODE to get an ODE in u(z).

Since

the ODE becomes
eu”(z) exp (@) + (/(z))2 exp <“(5"’>> — k(z)2exp (“@)) = 0.

€
Elimination the common exponential and setting v = u’ gives
ev' +v? — k(x)? = 0.
We substitute into the ODE the regular perturbation series
v(z) = vo(z) + evy (z) + O(€?)
to get for the leading-order, or O(1), term and first corrective, or O(e), term,

vg — k(2)* =0, v} + 2vpv; = 0.



Solving these gives

vo(x) = £k(z), vy =—

Thus we have the asymptotical expansion

v(x) = th(z) - e;“];((”;)) +0(&).

Since v" = u, integrating of the asymptotic expansion for v(x) gives an asymptotic
expansion

ule) =+ [ h(©) d — £ nk(a) + O(€),
where a is an arbitrary constant.

Returning to the original dependent variable y = exp(u(z)/e) we have an asymptotic
expansion

o) =exp (21 [ hte) dg - 25 1 0))
1

N O (il / k() dé) +0(e).

We have here two linearly independent approximations (one with the choice of + in =+,
the other with the choice of —).

The arbitrary linear combination of these gives the WKB approximation in the nonoscil-
latory case:

(o) = e (1 [ ) de) + e (1 [Thee) ac).

Example 3.14. Find the WKB approximation for

ey —(1+z)y=0, z>0.

Here we have k(x) = 1 + x, so that

/x(1+§)d§:x+$—2.
. 2

The WKB approximation is

(2) ¢ r+ 2%/2 LG x+ 2?2
x) = ex exp | ———— ).
YWKB T+ p c Ttz p c

Equivalently we can write

c1 :1:—|—x2/2> ca . ( x+x2/2)
x) = cosh + sinh ( ———— | .
ywrs(T) Ttz ( . Ttz .




The Oscillatory Case. Now we assume that ¢(x) > 0 on some interval I, and explicitly
write q(x) = k(z)? for k(x) > 0.

Similar to non-oscillatory case, the substitution y = exp(iu(z)/€) leads to a second-order
equation in u to which we apply the regular perturbation method.

This gives the WKB approximation in the oscillatory case to be

() = e ( JG d£> b e (— G d£) |

This can be written equivalently as

ywn(T) = ‘Z(x - (% / G d£) + \/% sin (_% / k(©) dg) .

Example 3.15. For the time-independent Schrédinger equation,

2

h "
5 + (V(az) — E)y =0

in the classical or oscillatory setting of E — V' (z) > 0, we have (by a trig identity the
combines the linear combination of cos and sin into one cos) the WKB approximation

A Vom [*
ywrs(r) = WCOS (T/a VE = V() d¢ + (/5)

where A is the amplitude and ¢ is the phase.

Another application of the WKB approximation is the determination of large “eigenval-
ues” of simple differential equations.

Example 3.16. For a function ¢(x) > 0, consider the problem of solving the BVP

Yy +M(z)y =0, 0 <z <m,
y(0) =0, y(m) =0,
when A is large, i.e., A > 1.

A number ) is an eigenvalue of the BVP is there exists a nonzero (or nontrivial) solu-
tion of the BVP for that particular value of A\, and the nontrivial solution is called an
eigenfunction corresponding to that particular value of \.

By setting € = 1/v/A and k(z) = y/q(z), the ODE becomes
ey + k(z)’y =0

to which we apply the WKB method when € is small (or A is big) to get

ywics(z) = % [ (\/X/ mdg) t ¢psin (JX/ \/@dg)] |

q(x)



The boundary condition y(0) = 0 forces ¢; = 0.
Then the boundary condition y(mw) = 0 forces

20251n<ﬁ/oﬂ\/@df).

If ¢ = 0, then we would get the zero (or trivial) solution yy kp(x) = 0.

To get c2 # 0, we must have that

Sin(ﬁ/j@dﬁ) = 0.

This requires that
\/Xsingr Vq(&) d§ =nm

for a large positive integer n (to keep in line with large values of \).

The large eigenvalues of the BVP are given approximately by

- —2
w=rnt ([t ac)
0
Approximations of the corresponding eigenfunctions are given by taking ¢ = 1, i.e.,

Yn(T) = ! sin (mr Jo V(&) df) .
@) i \/a(€) de




