Math 521 Lecture #27
§3.6: Asymptotic Expansions of Integrals, Part I

Even solutions of simple-looking ODEs can lead to integrals that cannot be evaluated in
closed form.

The solution of the second-order linear IVP,
y' 42Xy =0, y(0) =0, y'(0) =1,
is
t
y(t; ) = / exp(—\s?) ds.

0
How do we approximate the value of y for fixed A when t is large, or for fixed ¢ when A
is large?
We introduce standard techniques for approximating certain kinds of integrals.

§3.6.1: Laplace Integrals. One type of integral for which there is approximation
technique, is the integral of the form

b
I\ = / FOe™™D dt, x> 1

where ¢ is strictly increasing function on [a, b] and ¢’ is continuous on [a, b].
We assume that a < b < 0.
We may think of A > 1 as meaning A — oo.

An example of this type of integral is the Laplace transform

U\ = /OOO f(t)e™ dt.

The type of integral described by I(\) can always be transformed into an integral of the
form U(\).

The change of variable s = g(t) — g(a) is invertible because ¢ is increasing, giving the
existence of a function h(s) such that ¢t = h(s).

The differentials dt and ds are related by ds/dt = ¢/(t), or

where by assumption, ¢ is strictly positive and continuous.

Applying the change of variable to the integral I(\) gives

g(b)—g(a) 9(b)
1= [ ) e (G gl ds = e [



The technique, known as Laplace’s method, for approximating an integral of the form

I(\) = / ft)e M dt

is to identity a subinterval of [a, b] which gives the dominant contribution to the integral.

Because e~ goes to 0 rapidly as t — oo, we expect the dominant contribution to come
from a subinterval near ¢t = 0 as long as f(t) doesn’t grow too fast for large ¢.

Example 3.17. Find an approximation for the integral

Here are the graphs of the integrand for A = 1,2, 10 (the top or red, the middle or blue,
and the bottom or green graph).
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t
From these graphs we see that the dominant contribution comes from an small subinterval
containing 0.

For some T' > 0 we split the integral into

T _.: t [o cap: t
[()\) :/ Sl%exp(—)\t) dt+/ SlTneXp<—)\t) dt.
0

T

For T' > 1, the second integral is an exponentially small term (denoted by EST)
because

/ Sliexp(—k) dt‘ §/
T 1 0

This shows that the second integral is O(A™' exp(—AT')) as A — oc.

> exp(—AT)

exp(—At) dt < / exp(—At) dt = ——.
i )\

sint

The exponential small term is better yet o(A~™) for any m € N, so that it decays faster
to zero than any negative positive of .



Thus we write .
sint

I(\) = / —~ exp(—At) dt + EST.
0

On the finite interval [0, T] we replace sint by the first few terms of its Taylor’s series,

t3 5
sint =t — —+ O(t°),
3!
so that )
3!
Then we have that
T t2
I(\) = / (1 3 + O(t4)> exp(—At) dt + EST.
0 .

Making the change of variable u = At results in

IR u? 1
[()\):X/O (1_W+O(F>)GXP(_U) du + EST.

At this point we can let T'— oo and ignore the EST to get

) ~ %/Ooo (1 _ 37;‘—; + 0(%)) exp(—u) du.

Using the integration formulas
/ ue " du=m! m=0,1,2,3,...,
0

we obtain the asymptotic expansion

1 2! 1
I(A)Nx—ﬁ%—O(E), A1

We have used here the gamma function,
I'(z) = / u" e " du, x>0
0

which satisfies I'(1/2) = /m, I'(z+1) = 2T'(x), and T'(m) = (m—1)! form =1,2,3,.....

We state a result and its proof for the asymptotical expansion of a large number of
integrals.

Watson’s Lemma. If, for the integral

I\ = /O bto‘h(t)e’“ dt,



we have a > —1, h(t) has a Taylor expansion about ¢ = 0 with ~(0) # 0, and |h(¢t)| < ke
on 0 < t < b for some positive constants k and ¢, then we have the asymptotic expansion

A1

WM ()T (e + 1+ 1)
]<)\) ~ Z n!)\a-i-n-i-l
n=0

Proof. The condition @ > —1 guarantees the convergence of the improper integral at
=0.

The exponential boundedness of h guarantees the convergence of the improper integral
as t — oo.

We split the integral at some 7" > 0 to get
T [e'S)
I\ = / t*h(t) exp(—At) dt +/ t*h(t) exp(—At) dt.
0 T

The second integral is an exponential sum term, so that we have
T
I(\) = / t*h(t) exp(—At) dt + EST.
0

Replacing h(t) with its Taylor series at t = 0 gives

h//(())tz

2!

h//(o)ta+2
2!

I(\) = /OT e (h(O) + 1 (0)t + +-- ) exp(—At) dt + EST

T
= / (h(O)to‘ + B (0)t T + + - ) exp(—At) dt + EST.
0

Making the substitution u = At, ignoring the EST, and replacing the upper limit of
integration with oo gives the asymptotical expansion

10 ~ % /0 h (h(o) (%)a +1(0) G)aﬂ + hz—@ (%) R ) exp(—At) dt.

Finally, making use of the Gamma function gives the asymptotic expansion. 0



