
Math 521 Lecture #31
§4.2: Necessary Conditions for Extrema, Part II

§4.2.2: Derivatives of Functionals. To define what a local minimum for a functional
J is, we need the set of admissible functions A to be a subset of a function space V with
a norm ‖ · ‖.
We say y0 ∈ A is a local minimizer (or an extremal for J), and that J has a local
minimum at y0 (or is stationary at y0), if there exists ε > 0 such that J(y0) ≤ J(y)
for all y ∈ A with ‖y − y0‖ < ε.

This notion of local minimizer does depend on the norm used.

If A ⊂ C1[a, b], we say that J has a strong local (or relative) minimum at y0 if we use
with the strong norm, while we say that J has a weak local (or relative) minimum at y0

if we use the weak norm.

Example. The global minimizer of the arc length functional

J(y) =

∫ 1

0

√
1 + [y′(x)]2 dx

over the admissible set

A = {y ∈ C1[0, 1] : y(0) = 0, y(1) = 1} ⊂ C1[0, 1]

is the straight line y0(x) = x for which J(y0) =
√

2.

That is, we have
J(y0) ≤ J(y) for all y ∈ A.

By choosing a norm on C1[0, 1], we can view the global minimizer y0 as a local minimizer
for J(y) relative to the norm.

In the strong norm
‖y‖M = max

x∈[0,1]
|y(x)|

the open set
UM = {y ∈ C1[a, b] : ‖y − y0‖M < η}

consists of curves close to y0 but with arbitrarily large derivatives.

The strong local minimum
√

2 of J at y0 is the smallest in comparison with the value
J(y) for y ∈ UM which can be quite large.

In the weak norm
‖y‖w = max

x∈[0,1]
|y(x)|+ max

x∈[0,1]
|y′(x)|

the open set
Uw = {y ∈ C1[0, 1] : ‖y − y0‖w < η}

consists of curves close to y0 with derivatives close to 1.



The weak local minimum
√

2 of J at y0 is the smallest in comparison with the values of
J(y) for y ∈ Uw which are all close to

√
2.

Note that Uw is a proper subset of UM .

The weak local minimum is by comparison over a smaller subset of admissible functions,
while the strong local minimum is by comparison over a larger subset of admissible
functions.

In the Calculus of Variations, the choice of norm comes into play in the sufficient condi-
tions for the existence of extrema.

That is, if {J(y) : y ∈ A} is bounded below, then we can take a minimizing sequence
yn ∈ A such that

lim
n→∞

J(yn) = inf{J(y) : y ∈ A},

and hope that in the norm chosen, a subsequence of {yn} converges to y0 ∈ A, giving y0

as a global minimizer.

In analogy with a real valued function, we expect that the derivative of J at y0 should
be 0.

But how do we define the derivative of a functional?

We take the definition of the derivative of a real-valued function f(x),

f ′(x0) = lim
∆x→0

f(x+ ∆x)− f(x0)

∆x
,

and rewrite it in the form

0 = lim
∆x→0

[
f(x0 + ∆x)− f(x0)− f ′(x0)∆x

∆x

]
from which we get

f(x0 + ∆x)− f(x0) = f ′(x0)∆x+ o(∆x).

The differential of f at x0, defined by df(x0,∆x) = f ′(x0)∆x, is the linear part in the
increment ∆x of the total change ∆f = f(x0 + ∆x)− f(x).

This results in
∆f = df(x0,∆x) + o(∆x).

For a functional J : A → R, where A is a subset of a normed function space V , an
increment of y0 ∈ A has the form y0 + εh for h ∈ V and small ε.

We require that y0 + εh be in A for all sufficiently small ε, so that we can evaluate
J(y0 + εh).

We call the increment δy0 = (y0 + εh)− y0 = εh the variation of y0.

The corresponding increment in J is given by

∆J = J(y0 + εh)− J(y0).



We want to find the linear part of the increment ∆J which we do through the real-valued
function

J (ε) = J(y0 + εh)

which is defined on an open interval containing 0.

Assuming that J is sufficiently differentiable, we will have

∆J = J (ε)− J (0) = J ′(0)ε+ o(ε)

and so the differential of J is J ′(0)ε.

The first variation or Gâteaux derivative of J at y0 in the direction of h ∈ V is

δJ(y0, h) = J ′(0) =
d

dε
J(y0 + εh)

∣∣∣∣
ε=0

,

provided the derivative exist.

Such an h ∈ V for which δJ(y0, h) exists is called an admissible variation at y0, i.e.,
h ∈ V satisfies y0 + εh ∈ A for all sufficiently small ε and δJ(y0, h) exists.

The first variation is analogous with the directional derivative for a function of several
variables, and when written in limit form is

δJ(y0, h) = lim
ε→0

J(y0 + εh)− J(y0)

ε
.

4.2.3. Necessary Conditions. Equipped with the first variation of a functional, we
can now state a necessary condition for the existence of a local minimum.

Theorem 4.11. For a functional J : A → R with A ⊂ V , if y0 is a local minimum for
J relative to the norm ‖ · ‖ on V , then for all admissible h ∈ V at y0, there holds

δJ(y0, h) = 0.

Proof. Suppose that J(y0) is a local minimum of J relative to the norm ‖ · ‖.
For an admissible variation h ∈ V at y0, we have that y0 +εh ∈ A is “close” to y0 because

‖(y0 + εh)− y0‖ = ‖εh‖ = |ε| ‖h‖

can be made sufficiently small by choosing ε sufficiently small.

This means that y0 + εh is in the open set U = {y ∈ V : ‖y − y0‖ < η}
The real-valued function J (ε) = J(y0 + εh) has a local minimum at ε = 0, and hence its
derivative is 0, implying that δJ(y0, h) = 0. �

The vanishing of the first variation for all admissible variations often permits the elimi-
nation of admissible variation from the necessary condition to get a differential equation
that y0 must satisfy (another necessary condition).

Because we are dealing with a necessary condition, the y0 we find from the differential
equation may not be a minimizer, but could be a “saddle point.”



Example. For the arc length functional

J(y) =

∫ 1

0

√
1 + [y′(x)]2 dx

on the set of admissible functions

A = {y ∈ C2[0, 1] : y(0) = 0, y(1) = 1},
an admissible variation h ∈ C2[0, 1] satisfies h(0) = 0 and h(1) = 0.

[Notice that we have switched to C2[0, 1] from C1[0, 1]. We will see why in a minute.]

This means that y(0) + εh(0) = 0 and y(1) + εh(1) = 1 for all ε.

For y0 ∈ A we have that

J(y0 + εh) =

∫ 1

0

√
1 + [y′0(x) + εh′(x)]2 dx.

Then

d

dε
J(y0 + εh) =

d

dε

∫ 1

0

√
1 + [y′0(x) + εh′(x)]2 dx

=

∫ 1

0

∂

∂ε

√
1 + [y′0(x) + εh′(x)]2 dx

=

∫ 1

0

[y′0(x) + εh′(x)]h′(x)√
1 + [y′0(x) + εh′(x)]2

dx

and so by setting ε = 0 we get

δJ(y0, h) =

∫ 1

0

y′0(x)h′(x)√
1 + [y′0(x)]2

dx.

If we now integrate by parts, with

u =
y′0(x)√

1 + [y′0(x)]2
, dv = h′(x)dx,

we get

δJ(y0, h) =
y′0(x)h(x)√
1 + [y′0(x)]2

∣∣∣∣1
0

−
∫ 1

0

d

dx

[
y′0(x)√

1 + [y′0(x)]2

]
h(x) dx.

Because h(0) = 0 and h(1) = 0, the first part vanishes.

So if y0 is a minimizer of J , then for all admissible variations h we have that

0 = δJ(y0, h) = −
∫ 1

0

d

dx

[
y′0(x)√

1 + [y′0(x)]2

]
h(x) dx.

Because h(x) is an arbitrary admissible variation, we conclude that y0 satisfies the second-
order differential equation

d

dx

[
y′0(x)√

1 + [y′0(x)]2

]
= 0.


