Math 521 Lecture \#31

§4.2: Necessary Conditions for Extrema, Part II

§4.2.2: Derivatives of Functionals. To define what a local minimum for a functional J is, we need the set of admissible functions A to be a subset of a function space V with a norm $\|\cdot\|$.
We say $y_{0} \in A$ is a local minimizer (or an extremal for J), and that J has a local minimum at y_{0} (or is stationary at y_{0}), if there exists $\epsilon>0$ such that $J\left(y_{0}\right) \leq J(y)$ for all $y \in A$ with $\left\|y-y_{0}\right\|<\epsilon$.
This notion of local minimizer does depend on the norm used.
If $A \subset C^{1}[a, b]$, we say that J has a strong local (or relative) minimum at y_{0} if we use with the strong norm, while we say that J has a weak local (or relative) minimum at y_{0} if we use the weak norm.
Example. The global minimizer of the arc length functional

$$
J(y)=\int_{0}^{1} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x
$$

over the admissible set

$$
A=\left\{y \in C^{1}[0,1]: y(0)=0, y(1)=1\right\} \subset C^{1}[0,1]
$$

is the straight line $y_{0}(x)=x$ for which $J\left(y_{0}\right)=\sqrt{2}$.
That is, we have

$$
J\left(y_{0}\right) \leq J(y) \text { for all } y \in A .
$$

By choosing a norm on $C^{1}[0,1]$, we can view the global minimizer y_{0} as a local minimizer for $J(y)$ relative to the norm.
In the strong norm

$$
\|y\|_{M}=\max _{x \in[0,1]}|y(x)|
$$

the open set

$$
U_{M}=\left\{y \in C^{1}[a, b]:\left\|y-y_{0}\right\|_{M}<\eta\right\}
$$

consists of curves close to y_{0} but with arbitrarily large derivatives.
The strong local minimum $\sqrt{2}$ of J at y_{0} is the smallest in comparison with the value $J(y)$ for $y \in U_{M}$ which can be quite large.
In the weak norm

$$
\|y\|_{w}=\max _{x \in[0,1]}|y(x)|+\max _{x \in[0,1]}\left|y^{\prime}(x)\right|
$$

the open set

$$
U_{w}=\left\{y \in C^{1}[0,1]:\left\|y-y_{0}\right\|_{w}<\eta\right\}
$$

consists of curves close to y_{0} with derivatives close to 1 .

The weak local minimum $\sqrt{2}$ of J at y_{0} is the smallest in comparison with the values of $J(y)$ for $y \in U_{w}$ which are all close to $\sqrt{2}$.
Note that U_{w} is a proper subset of U_{M}.
The weak local minimum is by comparison over a smaller subset of admissible functions, while the strong local minimum is by comparison over a larger subset of admissible functions.

In the Calculus of Variations, the choice of norm comes into play in the sufficient conditions for the existence of extrema.
That is, if $\{J(y): y \in A\}$ is bounded below, then we can take a minimizing sequence $y_{n} \in A$ such that

$$
\lim _{n \rightarrow \infty} J\left(y_{n}\right)=\inf \{J(y): y \in A\}
$$

and hope that in the norm chosen, a subsequence of $\left\{y_{n}\right\}$ converges to $y_{0} \in A$, giving y_{0} as a global minimizer.
In analogy with a real valued function, we expect that the derivative of J at y_{0} should be 0 .
But how do we define the derivative of a functional?
We take the definition of the derivative of a real-valued function $f(x)$,

$$
f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f\left(x_{0}\right)}{\Delta x}
$$

and rewrite it in the form

$$
0=\lim _{\Delta x \rightarrow 0}\left[\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) \Delta x}{\Delta x}\right]
$$

from which we get

$$
f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \Delta x+o(\Delta x) .
$$

The differential of f at x_{0}, defined by $d f\left(x_{0}, \Delta x\right)=f^{\prime}\left(x_{0}\right) \Delta x$, is the linear part in the increment Δx of the total change $\Delta f=f\left(x_{0}+\Delta x\right)-f(x)$.
This results in

$$
\Delta f=d f\left(x_{0}, \Delta x\right)+o(\Delta x)
$$

For a functional $J: A \rightarrow \mathbb{R}$, where A is a subset of a normed function space V, an increment of $y_{0} \in A$ has the form $y_{0}+\epsilon h$ for $h \in V$ and small ϵ.
We require that $y_{0}+\epsilon h$ be in A for all sufficiently small ϵ, so that we can evaluate $J\left(y_{0}+\epsilon h\right)$.

We call the increment $\delta y_{0}=\left(y_{0}+\epsilon h\right)-y_{0}=\epsilon h$ the variation of y_{0}.
The corresponding increment in J is given by

$$
\Delta J=J\left(y_{0}+\epsilon h\right)-J\left(y_{0}\right)
$$

We want to find the linear part of the increment ΔJ which we do through the real-valued function

$$
\mathcal{J}(\epsilon)=J\left(y_{0}+\epsilon h\right)
$$

which is defined on an open interval containing 0 .
Assuming that \mathcal{J} is sufficiently differentiable, we will have

$$
\Delta J=\mathcal{J}(\epsilon)-\mathcal{J}(0)=\mathcal{J}^{\prime}(0) \epsilon+o(\epsilon)
$$

and so the differential of J is $\mathcal{J}^{\prime}(0) \epsilon$.
The first variation or Gâteaux derivative of J at y_{0} in the direction of $h \in V$ is

$$
\delta J\left(y_{0}, h\right)=\mathcal{J}^{\prime}(0)=\left.\frac{d}{d \epsilon} J\left(y_{0}+\epsilon h\right)\right|_{\epsilon=0},
$$

provided the derivative exist.
Such an $h \in V$ for which $\delta J\left(y_{0}, h\right)$ exists is called an admissible variation at y_{0}, i.e., $h \in V$ satisfies $y_{0}+\epsilon h \in A$ for all sufficiently small ϵ and $\delta J\left(y_{0}, h\right)$ exists.
The first variation is analogous with the directional derivative for a function of several variables, and when written in limit form is

$$
\delta J\left(y_{0}, h\right)=\lim _{\epsilon \rightarrow 0} \frac{J\left(y_{0}+\epsilon h\right)-J\left(y_{0}\right)}{\epsilon}
$$

4.2.3. Necessary Conditions. Equipped with the first variation of a functional, we can now state a necessary condition for the existence of a local minimum.
Theorem 4.11. For a functional $J: A \rightarrow \mathbb{R}$ with $A \subset V$, if y_{0} is a local minimum for J relative to the norm $\|\cdot\|$ on V, then for all admissible $h \in V$ at y_{0}, there holds

$$
\delta J\left(y_{0}, h\right)=0
$$

Proof. Suppose that $J\left(y_{0}\right)$ is a local minimum of J relative to the norm $\|\cdot\|$.
For an admissible variation $h \in V$ at y_{0}, we have that $y_{0}+\epsilon h \in A$ is "close" to y_{0} because

$$
\left\|\left(y_{0}+\epsilon h\right)-y_{0}\right\|=\|\epsilon h\|=|\epsilon|\|h\|
$$

can be made sufficiently small by choosing ϵ sufficiently small.
This means that $y_{0}+\epsilon h$ is in the open set $U=\left\{y \in V:\left\|y-y_{0}\right\|<\eta\right\}$
The real-valued function $\mathcal{J}(\epsilon)=J\left(y_{0}+\epsilon h\right)$ has a local minimum at $\epsilon=0$, and hence its derivative is 0 , implying that $\delta J\left(y_{0}, h\right)=0$.
The vanishing of the first variation for all admissible variations often permits the elimination of admissible variation from the necessary condition to get a differential equation that y_{0} must satisfy (another necessary condition).
Because we are dealing with a necessary condition, the y_{0} we find from the differential equation may not be a minimizer, but could be a "saddle point."

Example. For the arc length functional

$$
J(y)=\int_{0}^{1} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x
$$

on the set of admissible functions

$$
A=\left\{y \in C^{2}[0,1]: y(0)=0, y(1)=1\right\}
$$

an admissible variation $h \in C^{2}[0,1]$ satisfies $h(0)=0$ and $h(1)=0$.
[Notice that we have switched to $C^{2}[0,1]$ from $C^{1}[0,1]$. We will see why in a minute.]
This means that $y(0)+\epsilon h(0)=0$ and $y(1)+\epsilon h(1)=1$ for all ϵ.
For $y_{0} \in A$ we have that

$$
J\left(y_{0}+\epsilon h\right)=\int_{0}^{1} \sqrt{1+\left[y_{0}^{\prime}(x)+\epsilon h^{\prime}(x)\right]^{2}} d x .
$$

Then

$$
\begin{aligned}
\frac{d}{d \epsilon} J\left(y_{0}+\epsilon h\right) & =\frac{d}{d \epsilon} \int_{0}^{1} \sqrt{1+\left[y_{0}^{\prime}(x)+\epsilon h^{\prime}(x)\right]^{2}} d x \\
& =\int_{0}^{1} \frac{\partial}{\partial \epsilon} \sqrt{1+\left[y_{0}^{\prime}(x)+\epsilon h^{\prime}(x)\right]^{2}} d x \\
& =\int_{0}^{1} \frac{\left[y_{0}^{\prime}(x)+\epsilon h^{\prime}(x)\right] h^{\prime}(x)}{\sqrt{1+\left[y_{0}^{\prime}(x)+\epsilon h^{\prime}(x)\right]^{2}}} d x
\end{aligned}
$$

and so by setting $\epsilon=0$ we get

$$
\delta J\left(y_{0}, h\right)=\int_{0}^{1} \frac{y_{0}^{\prime}(x) h^{\prime}(x)}{\sqrt{1+\left[y_{0}^{\prime}(x)\right]^{2}}} d x .
$$

If we now integrate by parts, with

$$
u=\frac{y_{0}^{\prime}(x)}{\sqrt{1+\left[y_{0}^{\prime}(x)\right]^{2}}}, d v=h^{\prime}(x) d x
$$

we get

$$
\delta J\left(y_{0}, h\right)=\left.\frac{y_{0}^{\prime}(x) h(x)}{\sqrt{1+\left[y_{0}^{\prime}(x)\right]^{2}}}\right|_{0} ^{1}-\int_{0}^{1} \frac{d}{d x}\left[\frac{y_{0}^{\prime}(x)}{\sqrt{1+\left[y_{0}^{\prime}(x)\right]^{2}}}\right] h(x) d x .
$$

Because $h(0)=0$ and $h(1)=0$, the first part vanishes.
So if y_{0} is a minimizer of J, then for all admissible variations h we have that

$$
0=\delta J\left(y_{0}, h\right)=-\int_{0}^{1} \frac{d}{d x}\left[\frac{y_{0}^{\prime}(x)}{\sqrt{1+\left[y_{0}^{\prime}(x)\right]^{2}}}\right] h(x) d x .
$$

Because $h(x)$ is an arbitrary admissible variation, we conclude that y_{0} satisfies the secondorder differential equation

$$
\frac{d}{d x}\left[\frac{y_{0}^{\prime}(x)}{\sqrt{1+\left[y_{0}^{\prime}(x)\right]^{2}}}\right]=0
$$

