Math 521 Lecture #32
§4.3.1: The Euler Equation

Recall that last time we derive a second-order differential equation that a local minimizer
must satisfy for the arc length functional.

The derivation can be carried out for functionals of the form

b
J(y) = / Lia,y,y) do

where the Lagrangian L(z,y,y’) is a twice continuously differentiable function defined
on [a,b] x R x R.
A key step is the following result.

Lemma 4.13. If f(z) is continuous on [a, b] and if

/abf(x)h(x) dz =0

for every h € C?[a, b] with h(a) = 0 and h(b) = 0, then f(x) =0 for all = € [a, b].
Proof. Assume, by way of contradiction, that there is zq € [a, b] such that f(zq) # 0.
With loss of generality, we may assume that f(zq) > 0.

Because f is continuous, there is an interval [z, zs] with a < 21 < x5 < b such that
xo € |21, T3]

For a function h(z) € C?[a,b] with h(a) = 0 and h(b) = 0, we choose

0 otherwise.

h(z) = {(x — 213wy — ) ifzy << 2,

Here is the graph of this function A(x).
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The reason for the cubic powers is to ensure that the first and second derivatives of h(x)
at z; and xy are all zero, thus ensuring that h € C?[a, b].

With this choice of h(x) we reach the contradiction,

/ab f(z)h(x) dx = /:2 f(x)(x — xl)?’(@ B x)3 dr > 0.

This shows that f(z) =0 for all z € [a, ). O

We can now state the necessary condition of a differential equation that a local minimizer
must satisfy.

The differential equations obtained do not depend on the choice of a norm on the function
space which contains the set of admissible functions.

Theorem 4.14. If yo € A = {y € C?[a,b] : y(a) = ya, y(b) = y»} is a local minimizer
of the functional

J(y) = / L(z,y,y') dz,

then yo must satisfy the Euler equation (or Euler-Lagrange equation),

d
Ly('ra y7y/) - %Ly’<xu yvy/) = 0.

Proof. For h € C?[a,b] with h(a) = 0 and h(b) = 0, the variation yo + eh is admissible
for small enough e.
Then

b
J(yo + €h) = / L(z,y + eh,y' + ¢eh') dx,

and so
d i, D
%J(yo—l—eh) = i &L(:C,yo—l—eh,yo—l—eh) dx
b

— / [Ly(z,y0 + €h, y) + el )h + Ly (z,yo + €h, yy + eb')I'] du,

where L, = 0L/0y and L,, = OL/0y'.
Thus

d
— h
dEJ(ngre )

Since yg is a local minimizer, we know that

b
- / {Ly(%yoayf))h“‘Ly’(%?meé))h,}dZ‘-
e=0 a

d
0J (Yo, h) = Ej(yo +¢€h) =0

for all h € C?*[a, b] with h(a) = 0 and h(b) = 0.



This implies that
b
/ {Ly(xvyan())h+Ly'(x7y07y(,))h,}d'r =0
holds for all h € C?[a,b] with h(a) =0 and h(b) = 0.

We perform integration by parts on the second term in the integral: with u = L,/ (x, yo, y{)
and dv = h'dx, we get

b d z=b
/ (Ly(x,yo, Yo) = =Ly (& o, y())) h dx + Ly (2,90, 49)h| = 0.
Because h(a) = 0 and h(b) = 0, the evaluations vanishes, and we obtain
’ d
/ <Ly(x7y07y(l)) - @Ly'(‘r7y07y[/)>) h dx = 0
which holds for all h € C?|a, b] with h(a) = 0 and h(b) = 0.
We apply Lemma 4.13 to obtain
/ d /
Ly(ma y07y0) - %Ly/(x7y0-y0) = 07

which is the Euler equation. 0

This necessary condition was derived from the assumption of a local minimizer.

We do NOT know if any solution y of the Euler equation will be a local minimizer of
J(y)-

However, any solution of the Euler equation y will satisfy 6.J(y, h) = 0 for all h (we get
this by working some of the steps of the proof of the Theorem backwards).

So, in general, each solution of the Euler equation is a local extremum of J.

Carrying out the derivative with respect to x in the Euler equation gives

Ly(@,y,y') + Lya(2,9,9) + Lyy(@,9,9)y + Lyy (2,y,4)y" =0
and so the Euler equation is a second order differential equation when L,.,, # 0.

Example. The Euler equation for

18

d
0= Ly(xaymy/) - %Ly/(x,y,y’)

= —V'(y) —my".

The extremals of J are precisely the solutions of the mechanical system my” = —V'(y).



