Math 521 Lecture \#32

§4.3.1: The Euler Equation

Recall that last time we derive a second-order differential equation that a local minimizer must satisfy for the arc length functional.

The derivation can be carried out for functionals of the form

$$
J(y)=\int_{a}^{b} L\left(x, y, y^{\prime}\right) d x
$$

where the Lagrangian $L\left(x, y, y^{\prime}\right)$ is a twice continuously differentiable function defined on $[a, b] \times \mathbb{R} \times \mathbb{R}$.

A key step is the following result.
Lemma 4.13. If $f(x)$ is continuous on $[a, b]$ and if

$$
\int_{a}^{b} f(x) h(x) d x=0
$$

for every $h \in C^{2}[a, b]$ with $h(a)=0$ and $h(b)=0$, then $f(x)=0$ for all $x \in[a, b]$.
Proof. Assume, by way of contradiction, that there is $x_{0} \in[a, b]$ such that $f\left(x_{0}\right) \neq 0$.
With loss of generality, we may assume that $f\left(x_{0}\right)>0$.
Because f is continuous, there is an interval $\left[x_{1}, x_{2}\right.$] with $a \leq x_{1}<x_{2} \leq b$ such that $x_{0} \in\left[x_{1}, x_{2}\right]$.
For a function $h(x) \in C^{2}[a, b]$ with $h(a)=0$ and $h(b)=0$, we choose

$$
h(x)= \begin{cases}\left(x-x_{1}\right)^{3}\left(x_{2}-x\right)^{3} & \text { if } x_{1} \leq x \leq x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Here is the graph of this function $h(x)$.

The reason for the cubic powers is to ensure that the first and second derivatives of $h(x)$ at x_{1} and x_{2} are all zero, thus ensuring that $h \in C^{2}[a, b]$.
With this choice of $h(x)$ we reach the contradiction,

$$
\int_{a}^{b} f(x) h(x) d x=\int_{x_{1}}^{x_{2}} f(x)\left(x-x_{1}\right)^{3}\left(x_{2}-x\right)^{3} d x>0 .
$$

This shows that $f(x)=0$ for all $x \in[a, b]$.
We can now state the necessary condition of a differential equation that a local minimizer must satisfy.

The differential equations obtained do not depend on the choice of a norm on the function space which contains the set of admissible functions.
Theorem 4.14. If $y_{0} \in A=\left\{y \in C^{2}[a, b]: y(a)=y_{a}, y(b)=y_{b}\right\}$ is a local minimizer of the functional

$$
J(y)=\int_{a}^{b} L\left(x, y, y^{\prime}\right) d x
$$

then y_{0} must satisfy the Euler equation (or Euler-Lagrange equation),

$$
L_{y}\left(x, y, y^{\prime}\right)-\frac{d}{d x} L_{y^{\prime}}\left(x, y, y^{\prime}\right)=0
$$

Proof. For $h \in C^{2}[a, b]$ with $h(a)=0$ and $h(b)=0$, the variation $y_{0}+\epsilon h$ is admissible for small enough ϵ.
Then

$$
J\left(y_{0}+\epsilon h\right)=\int_{a}^{b} L\left(x, y+\epsilon h, y^{\prime}+\epsilon h^{\prime}\right) d x
$$

and so

$$
\begin{aligned}
\frac{d}{d \epsilon} J\left(y_{0}+\epsilon h\right) & =\int_{a}^{b} \frac{\partial}{\partial \epsilon} L\left(x, y_{0}+\epsilon h, y_{0}^{\prime}+\epsilon h^{\prime}\right) d x \\
& =\int_{a}^{b}\left[L_{y}\left(x, y_{0}+\epsilon h, y_{0}^{\prime}+\epsilon h^{\prime}\right) h+L_{y^{\prime}}\left(x, y_{0}+\epsilon h, y_{0}^{\prime}+\epsilon h^{\prime}\right) h^{\prime}\right] d x
\end{aligned}
$$

where $L_{y}=\partial L / \partial y$ and $L_{y^{\prime}}=\partial L / \partial y^{\prime}$.
Thus

$$
\left.\frac{d}{d \epsilon} J\left(y_{0}+\epsilon h\right)\right|_{\epsilon=0}=\int_{a}^{b}\left\{L_{y}\left(x, y_{0}, y_{0}^{\prime}\right) h+L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}\right) h^{\prime}\right\} d x
$$

Since y_{0} is a local minimizer, we know that

$$
\delta J\left(y_{0}, h\right)=\frac{d}{d \epsilon} J\left(y_{0}+\epsilon h\right)=0
$$

for all $h \in C^{2}[a, b]$ with $h(a)=0$ and $h(b)=0$.

This implies that

$$
\int_{a}^{b}\left\{L_{y}\left(x, y_{0}, y_{0}^{\prime}\right) h+L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}\right) h^{\prime}\right\} d x=0
$$

holds for all $h \in C^{2}[a, b]$ with $h(a)=0$ and $h(b)=0$.
We perform integration by parts on the second term in the integral: with $u=L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}\right)$ and $d v=h^{\prime} d x$, we get

$$
\int_{a}^{b}\left(L_{y}\left(x, y_{0}, y_{0}^{\prime}\right)-\frac{d}{d x} L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}\right)\right) h d x+\left.L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}\right) h\right|_{x=a} ^{x=b}=0
$$

Because $h(a)=0$ and $h(b)=0$, the evaluations vanishes, and we obtain

$$
\int_{a}^{b}\left(L_{y}\left(x, y_{0}, y_{0}^{\prime}\right)-\frac{d}{d x} L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}\right)\right) h d x=0
$$

which holds for all $h \in C^{2}[a, b]$ with $h(a)=0$ and $h(b)=0$.
We apply Lemma 4.13 to obtain

$$
L_{y}\left(x, y_{0}, y_{0}^{\prime}\right)-\frac{d}{d x} L_{y^{\prime}}\left(x, y_{0} \cdot y_{0}^{\prime}\right)=0
$$

which is the Euler equation.
This necessary condition was derived from the assumption of a local minimizer.
We do NOT know if any solution y of the Euler equation will be a local minimizer of $J(y)$.
However, any solution of the Euler equation y will satisfy $\delta J(y, h)=0$ for all h (we get this by working some of the steps of the proof of the Theorem backwards).
So, in general, each solution of the Euler equation is a local extremum of J.
Carrying out the derivative with respect to x in the Euler equation gives

$$
L_{y}\left(x, y, y^{\prime}\right)+L_{y^{\prime} x}\left(x, y, y^{\prime}\right)+L_{y^{\prime} y}\left(x, y, y^{\prime}\right) y^{\prime}+L_{y^{\prime} y^{\prime}}\left(x, y, y^{\prime}\right) y^{\prime \prime}=0
$$

and so the Euler equation is a second order differential equation when $L_{y^{\prime} y^{\prime}} \neq 0$.
Example. The Euler equation for

$$
J(y)=\int_{0}^{1}\left(\frac{m\left(y^{\prime}\right)^{2}}{2}-V(y)\right) d x
$$

is

$$
\begin{aligned}
0 & =L_{y}\left(x, y, y^{\prime}\right)-\frac{d}{d x} L_{y^{\prime}}\left(x, y, y^{\prime}\right) \\
& =-V^{\prime}(y)-m y^{\prime \prime}
\end{aligned}
$$

The extremals of J are precisely the solutions of the mechanical system $m y^{\prime \prime}=-V^{\prime}(y)$.

