
Math 521 Lecture #32
§4.3.1: The Euler Equation

Recall that last time we derive a second-order differential equation that a local minimizer
must satisfy for the arc length functional.

The derivation can be carried out for functionals of the form

J(y) =

∫ b

a

L(x, y, y′) dx

where the Lagrangian L(x, y, y′) is a twice continuously differentiable function defined
on [a, b]× R× R.

A key step is the following result.

Lemma 4.13. If f(x) is continuous on [a, b] and if∫ b

a

f(x)h(x) dx = 0

for every h ∈ C2[a, b] with h(a) = 0 and h(b) = 0, then f(x) = 0 for all x ∈ [a, b].

Proof. Assume, by way of contradiction, that there is x0 ∈ [a, b] such that f(x0) 6= 0.

With loss of generality, we may assume that f(x0) > 0.

Because f is continuous, there is an interval [x1, x2] with a ≤ x1 < x2 ≤ b such that
x0 ∈ [x1, x2].

For a function h(x) ∈ C2[a, b] with h(a) = 0 and h(b) = 0, we choose

h(x) =

{
(x− x1)3(x2 − x)3 if x1 ≤ x ≤ x2,

0 otherwise.

Here is the graph of this function h(x).



The reason for the cubic powers is to ensure that the first and second derivatives of h(x)
at x1 and x2 are all zero, thus ensuring that h ∈ C2[a, b].

With this choice of h(x) we reach the contradiction,∫ b

a

f(x)h(x) dx =

∫ x2

x1

f(x)(x− x1)3(x2 − x)3 dx > 0.

This shows that f(x) = 0 for all x ∈ [a, b]. �

We can now state the necessary condition of a differential equation that a local minimizer
must satisfy.

The differential equations obtained do not depend on the choice of a norm on the function
space which contains the set of admissible functions.

Theorem 4.14. If y0 ∈ A = {y ∈ C2[a, b] : y(a) = ya, y(b) = yb} is a local minimizer
of the functional

J(y) =

∫ b

a

L(x, y, y′) dx,

then y0 must satisfy the Euler equation (or Euler-Lagrange equation),

Ly(x, y, y
′)− d

dx
Ly′(x, y, y

′) = 0.

Proof. For h ∈ C2[a, b] with h(a) = 0 and h(b) = 0, the variation y0 + εh is admissible
for small enough ε.

Then

J(y0 + εh) =

∫ b

a

L(x, y + εh, y′ + εh′) dx,

and so

d

dε
J(y0 + εh) =

∫ b

a

∂

∂ε
L(x, y0 + εh, y′0 + εh′) dx

=

∫ b

a

[
Ly(x, y0 + εh, y′0 + εh′)h+ Ly′(x, y0 + εh, y′0 + εh′)h′

]
dx,

where Ly = ∂L/∂y and Ly′ = ∂L/∂y′.

Thus
d

dε
J(y0 + εh)

∣∣∣∣
ε=0

=

∫ b

a

{
Ly(x, y0, y

′
0)h+ Ly′(x, y0, y

′
0)h

′}dx.
Since y0 is a local minimizer, we know that

δJ(y0, h) =
d

dε
J(y0 + εh) = 0

for all h ∈ C2[a, b] with h(a) = 0 and h(b) = 0.



This implies that ∫ b

a

{
Ly(x, y0, y

′
0)h+ Ly′(x, y0, y

′
0)h

′}dx = 0

holds for all h ∈ C2[a, b] with h(a) = 0 and h(b) = 0.

We perform integration by parts on the second term in the integral: with u = Ly′(x, y0, y
′
0)

and dv = h′dx, we get∫ b

a

(
Ly(x, y0, y

′
0)−

d

dx
Ly′(x, y0, y

′
0)

)
h dx+ Ly′(x, y0, y

′
0)h

∣∣∣∣x=b
x=a

= 0.

Because h(a) = 0 and h(b) = 0, the evaluations vanishes, and we obtain∫ b

a

(
Ly(x, y0, y

′
0)−

d

dx
Ly′(x, y0, y

′
0)

)
h dx = 0

which holds for all h ∈ C2[a, b] with h(a) = 0 and h(b) = 0.

We apply Lemma 4.13 to obtain

Ly(x, y0, y
′
0)−

d

dx
Ly′(x, y0.y

′
0) = 0,

which is the Euler equation. �

This necessary condition was derived from the assumption of a local minimizer.

We do NOT know if any solution y of the Euler equation will be a local minimizer of
J(y).

However, any solution of the Euler equation y will satisfy δJ(y, h) = 0 for all h (we get
this by working some of the steps of the proof of the Theorem backwards).

So, in general, each solution of the Euler equation is a local extremum of J .

Carrying out the derivative with respect to x in the Euler equation gives

Ly(x, y, y
′) + Ly′x(x, y, y

′) + Ly′y(x, y, y
′)y′ + Ly′y′(x, y, y

′)y′′ = 0

and so the Euler equation is a second order differential equation when Ly′y′ 6= 0.

Example. The Euler equation for

J(y) =

∫ 1

0

(
m(y′)2

2
− V (y)

)
dx

is

0 = Ly(x, y, y
′)− d

dx
Ly′(x, y, y

′)

= −V ′(y)−my′′.

The extremals of J are precisely the solutions of the mechanical system my′′ = −V ′(y).


