Math 521 Lecture \#33

§4.3.2: Solved Examples; 4.3.3: First Integrals

Recall that the Euler equation $L_{y}-(d / d x) L_{y^{\prime}}=0$ is a necessary condition that is satisfied by a minimizer (or extremum) y_{0} of a functional

$$
J(y)=\int_{a}^{b} L\left(x, y, y^{\prime}\right) d t, y \in C^{2}[a, b], y(a)=y_{a}, y(b)=y_{b}
$$

Showing that a solution of the Euler equation is a minimizer requires analysis beyond the scope of this course.
However, the search for a minimizer is reduced through the Euler equation to solutions of a differential equation.
Example 4.15. Find the extremals of the functional

$$
J(y)=\int_{0}^{1}\left(\left(y^{\prime}\right)^{2}+3 y+2 x\right) d x, y(0)=0, y(1)=1
$$

We tacitly assume that $y \in C^{2}[0,1]$ so that we can obtain the Euler equation.
With

$$
L\left(x, y, y^{\prime}\right)=\left(y^{\prime}\right)^{2}+3 y+2 x
$$

the Euler equation for J is

$$
3+\frac{d}{d x}\left(2 y^{\prime}\right)=0
$$

This is the second-order linear non homogeneous equation

$$
y^{\prime \prime}=\frac{3}{2} .
$$

We solve this by integrating twice to obtain

$$
y=C_{1} x+C_{2}+\frac{3 x^{2}}{4}
$$

From the boundary conditions $y(0)=0$ and $y(1)=1$ we obtain the linear system of equations,

$$
\begin{aligned}
C_{2} & =0 \\
C_{1}+C_{2} & =1-\frac{3}{4} .
\end{aligned}
$$

We have a unique solution for C_{1} and C_{2}, and hence a unique solution of Euler equation subject to the boundary conditions, namely,

$$
y_{0}=\frac{x}{4}+\frac{3 x^{2}}{4} .
$$

Unfortunately, we do not know if this is a minimizer or maximizer of $J(y)$, or if it is neither, because all we know is that $\delta J\left(y_{0}, h\right)=0$ for all admissible variations h.

Example 4.16. Recall that we found the Euler equation for the arc length functional

$$
J(y)=\int_{0}^{1} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x, y(0)=0, y(1)=1
$$

We illustrated the proof of the Theorem for the Euler equation and got

$$
\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+\left[y^{\prime}\right]^{2}}}\right)=0
$$

We can verify it this now using the Lagrangian

$$
L\left(x, y, y^{\prime}\right)=\sqrt{1+\left[y^{\prime}\right]^{2}} .
$$

For then the Euler equation is

$$
0+\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+\left[y^{\prime}\right]^{2}}}\right)=0
$$

Solving this gives for an arbitrary constant C that

$$
\frac{y^{\prime}}{\sqrt{1+\left[y^{\prime}\right]^{2}}}=C .
$$

We can solve this for y^{\prime} :

$$
\begin{aligned}
& y^{\prime}=C \sqrt{1+\left[y^{\prime}\right]^{2}} \\
& {\left[y^{\prime}\right]^{2}=C^{2}\left(1+\left[y^{\prime}\right]^{2}\right)} \\
& {\left[y^{\prime}\right]^{2}-C^{2}\left[y^{\prime}\right]=C_{2}} \\
& {\left[y^{\prime}\right]^{2}=\frac{C_{2}}{1-C_{2}} .}
\end{aligned}
$$

This implies that y^{\prime} is a constant, so that

$$
y(x)=K x+M
$$

From the boundary conditions $y(0)=0$ and $y(1)=0$ we get that $K=1$ and $M=0$, so that $y_{0}(x)=x$ is the only solution of the Euler equation subject to the boundary conditions.

On geometric grounds we can argue that $y_{0}(x)=x$ is a global minimizer of the arc length functional.

When the Lagrangian L does not explicitly depend on one of the three variables x, y, and y^{\prime}, we can make a simplification in the Euler equation.
When L does not depend on y^{\prime}, then the Euler equation is not a differential equation, but an algebraic equation,

$$
L_{y}(x, y)=0
$$

Generally (through the implicit function theorem), this implicitly (and sometimes explicitly) defines y as a function of x.
When L does not depend on y, then the Euler equation is

$$
\frac{d}{d x} L_{y^{\prime}}\left(x, y^{\prime}\right)=0, \text { or } L_{y^{\prime}}\left(x, y^{\prime}\right)=C
$$

for an arbitrary constant C (as it did for the arc length functional).
When L does not depend on x, then multiplying the Euler equation through by y^{\prime} gives

$$
\begin{aligned}
0 & =y^{\prime}\left(L_{y}-\frac{d}{d x} L_{y^{\prime}}\right) \\
& =y^{\prime} L_{y}-y^{\prime} \frac{d}{d x} L_{y^{\prime}}+L_{y^{\prime}} y^{\prime \prime}-L_{y^{\prime}} y^{\prime \prime} \\
& =L_{y} y^{\prime}+L_{y^{\prime}} y^{\prime \prime}-y^{\prime} \frac{d}{d x} L_{y^{\prime}}-y^{\prime \prime} L_{y^{\prime}} \\
& =\frac{d L}{d x}-y^{\prime} \frac{d}{d x} L_{y^{\prime}}-y^{\prime \prime} L_{y^{\prime}} \\
& =\frac{d}{d x}\left[L-y^{\prime} L_{y^{\prime}}\right] .
\end{aligned}
$$

This says that the quantity $L-y^{\prime} L_{y^{\prime}}$ is a conserved quantity or a first integral.
Formally, a first integral of a second-order ordinary differential equation $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=$ 0 is a function $g\left(x, y, y^{\prime}\right)$ which is constant along each solution of $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0$.
In the Calculus of Variations, when L is independent of x, a first integral or conservation law of the Euler equations of the extremals is

$$
g\left(y, y^{\prime}\right)=L\left(y, y^{\prime}\right)-y^{\prime} L_{y^{\prime}}\left(y, y^{\prime}\right)
$$

We can use a first integral to determine the extremals of a functional.
Example 4.17. The functional for the brachistochrone problem is

$$
J(y)=\int_{0}^{a} \frac{\sqrt{1+\left[y^{\prime}\right]^{2}}}{\sqrt{2 g(b-y)}} d x, y(0)=b, y(1)=0
$$

The Lagrangian for this functional is independent of x, so a first integral of the Euler equation is

$$
C=L-y^{\prime} L_{y^{\prime}}=\frac{\sqrt{1+\left[y^{\prime}\right]^{2}}}{\sqrt{2 g(b-y)}}-\left(y^{\prime}\right)^{2} \frac{\left(1+\left[y^{\prime}\right]^{2}\right)^{-1 / 2}}{\sqrt{2 g(b-y)}} .
$$

We can absorb the common number $\sqrt{2 g}$ into C.
Multiplying the resulting equation through by $\sqrt{1+\left[y^{\prime}\right]^{2}}$ gives

$$
C \sqrt{1+\left[y^{\prime}\right]^{2}}=\frac{1+\left(y^{\prime}\right)^{2}}{\sqrt{b-y}}-\frac{\left(y^{\prime}\right)^{2}}{\sqrt{b-y}}=\frac{1}{\sqrt{b-y}}
$$

Squaring both sides gives

$$
C^{2}\left(1+\left[y^{\prime}\right]^{2}\right)=\frac{1}{b-y} .
$$

Simplifying this gives

$$
\left(y^{\prime}\right)^{2}=\frac{1}{C^{2}(b-y)}-1=\frac{1-C^{2}(b-y)}{C^{2}(b-y)} .
$$

From physical considerations (the bead is rolling downward), we know that $d y / d x<0$. Thus we have obtain the first order equation

$$
\frac{d y}{d x}=-\sqrt{\frac{1-C^{2}(b-y)}{C^{2}(b-y)}}
$$

in addition to the second-order Euler equation that an extremal of the brachistochrone function must satisfy.
If we write $C_{1}=C^{-2}$ and separate variables, the first-order equation becomes

$$
d x=-\frac{\sqrt{b-y}}{\sqrt{C_{1}-(b-y)}} d y
$$

Through the substitution

$$
b-y=C_{1} \sin ^{2}(\phi / 2),-d y=C_{1} \sin (\phi / 2) \cos (\phi / 2) d \phi
$$

we obtain

$$
\begin{aligned}
d x & =\frac{\sqrt{C}_{1} \sin \phi / 2}{\sqrt{C_{1}\left(1-\sin ^{2} \phi / 2\right)}} C_{1} \sin (\phi / 2) \cos (\phi / 2) d \phi \\
& =C_{1} \sin ^{2}(\phi / 2) d \phi \\
& =\frac{C_{1}}{2}(1-\cos \phi) d \phi .
\end{aligned}
$$

Integration gives

$$
x=\frac{C_{1}}{2}(\phi-\sin \phi)+C_{2} .
$$

The functions x and y of ϕ are parametric equations for a cycloid.

