Math 521 Lecture #33
§4.3.2: Solved Examples; 4.3.3: First Integrals

Recall that the Euler equation L, —(d/dz)L, = 0 is a necessary condition that is satisfied
by a minimizer (or extremum) yo of a functional

J(y) = / Lz,y.y) dt, y € C?a,b], y(a) = var y(b) =

Showing that a solution of the Euler equation is a minimizer requires analysis beyond
the scope of this course.

However, the search for a minimizer is reduced through the Euler equation to solutions
of a differential equation.

Example 4.15. Find the extremals of the functional

s = [ () +30-+20) o 0 =0,y =1

We tacitly assume that y € C?[0, 1] so that we can obtain the Euler equation.
With

L(z,y,9") = (v')* + 3y + 2z,
the Euler equation for J is

3+ﬁ{%qzu

dx
This is the second-order linear non homogeneous equation
"n_ §
2

We solve this by integrating twice to obtain

3 2
y=Cuz+Cy+ %
From the boundary conditions y(0) = 0 and y(1) = 1 we obtain the linear system of

equations,
02 - O

3
Cl + 02 - 1 - Z_L
We have a unique solution for C; and Cs, and hence a unique solution of Euler equation
subject to the boundary conditions, namely,
o n 3z
Yo = 1 1
Unfortunately, we do not know if this is a minimizer or maximizer of J(y), or if it is
neither, because all we know is that §.J(yo, h) = 0 for all admissible variations h.



Example 4.16. Recall that we found the Euler equation for the arc length functional

I(y) = / VIT @R dr, y(0) =0, y(1) = 1.

We illustrated the proof of the Theorem for the Euler equation and got

df_yv \_
dfﬂ( 1+[y’]2> "

We can verify it this now using the Lagrangian

L(z,y,y") = V14 [y]%

For then the Euler equation is

We can solve this for 3/

C
n2 __ 2
This implies that 3’ is a constant, so that
y(x) = Kz + M.

From the boundary conditions y(0) = 0 and y(1) = 0 we get that K = 1 and M = 0,
so that yo(x) = x is the only solution of the Euler equation subject to the boundary
conditions.

On geometric grounds we can argue that yo(z) = x is a global minimizer of the arc length
functional.

When the Lagrangian L does not explicitly depend on one of the three variables x, vy,
and 7/, we can make a simplification in the Euler equation.

When L does not depend on ¢/, then the Euler equation is not a differential equation,
but an algebraic equation,
Ly(xz,y) =0.



Generally (through the implicit function theorem), this implicitly (and sometimes explic-
itly) defines y as a function of z.

When L does not depend on y, then the Euler equation is

d
%Ly/(:c,y’) =0, or Ly(z,y)=C

for an arbitrary constant C' (as it did for the arc length functional).

When L does not depend on x, then multiplying the Euler equation through by 3’ gives

d
0= y, (Ly - %Ly/)

d
Ly/ + Ly’y” . Ly/y”

:y/Ly_y/%
/ ! /d !
:Lyy +Ly/y —y@Ly/—y Ly’
dL  ,d
- _L/_ ”L/
dx yd:v v Yy
d
=—[L—-yL,|.

This says that the quantity L — y'L,/ is a conserved quantity or a first integral.

Formally, a first integral of a second-order ordinary differential equation F'(x,y, vy, y") =
0 is a function g(z,y,y’) which is constant along each solution of F(x,y,y’,y") = 0.

In the Calculus of Variations, when L is independent of x, a first integral or conservation
law of the Euler equations of the extremals is

9. y") = L(y,y") —y'Ly(y,y).
We can use a first integral to determine the extremals of a functional.

Example 4.17. The functional for the brachistochrone problem is
[ TP
0 v29(b—y)

The Lagrangian for this functional is independent of x, so a first integral of the Euler
equation is

J(y) dz, y(0) = b, y(1) = 0.

VATl U7 e G U4
V29(b—y) V29(b —y)

We can absorb the common number /2g into C.

C = L—y/Ly/

Multiplying the resulting equation through by /1 + [¢/]? gives

s 1+ W) 1
OVt = Vi—y b=y  Vb—y




Squaring both sides gives

1
2 1 12 — .
O+ = 5—
Simplifying this gives
()? = 1 L 1=Cb—y)
e U R T ()

From physical considerations (the bead is rolling downward), we know that dy/dz < 0.

Thus we have obtain the first order equation

dy — [1-C%*(b—y)
de —\ C(b—vy)

in addition to the second-order Euler equation that an extremal of the brachistochrone
function must satisfy.

If we write C; = C'~2 and separate variables, the first-order equation becomes

Vb —y
C1—(b—y)

de = —

dy.

Through the substitution

b—y = C;sin®*(¢/2), —dy = C,sin(¢/2) cos(¢/2)de,
we obtain

_ V/Cising/2
r =
VCi(1 —sin® ¢/2)
= O sin®*(¢/2) do

= %(1 — cos gb) do.

C1sin(¢/2) cos(¢/2) do

Integration gives

T = %(gb—sinqﬁ) + Ch.

The functions x and y of ¢ are parametric equations for a cycloid.



