
Math 521 Lecture #33
§4.3.2: Solved Examples; 4.3.3: First Integrals

Recall that the Euler equation Ly−(d/dx)Ly′ = 0 is a necessary condition that is satisfied
by a minimizer (or extremum) y0 of a functional

J(y) =

∫ b

a

L(x, y, y′) dt, y ∈ C2[a, b], y(a) = ya, y(b) = yb.

Showing that a solution of the Euler equation is a minimizer requires analysis beyond
the scope of this course.

However, the search for a minimizer is reduced through the Euler equation to solutions
of a differential equation.

Example 4.15. Find the extremals of the functional

J(y) =

∫ 1

0

(
(y′)2 + 3y + 2x

)
dx, y(0) = 0, y(1) = 1.

We tacitly assume that y ∈ C2[0, 1] so that we can obtain the Euler equation.

With
L(x, y, y′) = (y′)2 + 3y + 2x,

the Euler equation for J is

3 +
d

dx

(
2y′
)

= 0.

This is the second-order linear non homogeneous equation

y′′ =
3

2
.

We solve this by integrating twice to obtain

y = C1x+ C2 +
3x2

4
.

From the boundary conditions y(0) = 0 and y(1) = 1 we obtain the linear system of
equations,

C2 = 0

C1 + C2 = 1− 3

4
.

We have a unique solution for C1 and C2, and hence a unique solution of Euler equation
subject to the boundary conditions, namely,

y0 =
x

4
+

3x2

4
.

Unfortunately, we do not know if this is a minimizer or maximizer of J(y), or if it is
neither, because all we know is that δJ(y0, h) = 0 for all admissible variations h.



Example 4.16. Recall that we found the Euler equation for the arc length functional

J(y) =

∫ 1

0

√
1 + [y′(x)]2 dx, y(0) = 0, y(1) = 1.

We illustrated the proof of the Theorem for the Euler equation and got

d

dx

(
y′√

1 + [y′]2

)
= 0.

We can verify it this now using the Lagrangian

L(x, y, y′) =
√

1 + [y′]2.

For then the Euler equation is

0 +
d

dx

(
y′√

1 + [y′]2

)
= 0.

Solving this gives for an arbitrary constant C that

y′√
1 + [y′]2

= C.

We can solve this for y′:

y′ = C
√

1 + [y′]2

[y′]2 = C2(1 + [y′]2)

[y′]2 − C2[y′] = C2

[y′]2 =
C2

1− C2

.

This implies that y′ is a constant, so that

y(x) = Kx+M.

From the boundary conditions y(0) = 0 and y(1) = 0 we get that K = 1 and M = 0,
so that y0(x) = x is the only solution of the Euler equation subject to the boundary
conditions.

On geometric grounds we can argue that y0(x) = x is a global minimizer of the arc length
functional.

When the Lagrangian L does not explicitly depend on one of the three variables x, y,
and y′, we can make a simplification in the Euler equation.

When L does not depend on y′, then the Euler equation is not a differential equation,
but an algebraic equation,

Ly(x, y) = 0.



Generally (through the implicit function theorem), this implicitly (and sometimes explic-
itly) defines y as a function of x.

When L does not depend on y, then the Euler equation is

d

dx
Ly′(x, y

′) = 0, or Ly′(x, y
′) = C

for an arbitrary constant C (as it did for the arc length functional).

When L does not depend on x, then multiplying the Euler equation through by y′ gives

0 = y′
(
Ly −

d

dx
Ly′

)
= y′Ly − y′

d

dx
Ly′ + Ly′y

′′ − Ly′y
′′

= Lyy
′ + Ly′y

′′ − y′ d
dx
Ly′ − y′′Ly′

=
dL

dx
− y′ d

dx
Ly′ − y′′Ly′

=
d

dx
[L− y′Ly′ ] .

This says that the quantity L− y′Ly′ is a conserved quantity or a first integral.

Formally, a first integral of a second-order ordinary differential equation F (x, y, y′, y′′) =
0 is a function g(x, y, y′) which is constant along each solution of F (x, y, y′, y′′) = 0.

In the Calculus of Variations, when L is independent of x, a first integral or conservation
law of the Euler equations of the extremals is

g(y, y′) = L(y, y′)− y′Ly′(y, y
′).

We can use a first integral to determine the extremals of a functional.

Example 4.17. The functional for the brachistochrone problem is

J(y) =

∫ a

0

√
1 + [y′]2√
2g(b− y)

dx, y(0) = b, y(1) = 0.

The Lagrangian for this functional is independent of x, so a first integral of the Euler
equation is

C = L− y′Ly′ =

√
1 + [y′]2√
2g(b− y)

− (y′)2
(1 + [y′]2)−1/2√

2g(b− y)
.

We can absorb the common number
√

2g into C.

Multiplying the resulting equation through by
√

1 + [y′]2 gives

C
√

1 + [y′]2 =
1 + (y′)2√
b− y

− (y′)2√
b− y

=
1√
b− y

.



Squaring both sides gives

C2(1 + [y′]2) =
1

b− y
.

Simplifying this gives

(y′)2 =
1

C2(b− y)
− 1 =

1− C2(b− y)

C2(b− y)
.

From physical considerations (the bead is rolling downward), we know that dy/dx < 0.

Thus we have obtain the first order equation

dy

dx
= −

√
1− C2(b− y)

C2(b− y)

in addition to the second-order Euler equation that an extremal of the brachistochrone
function must satisfy.

If we write C1 = C−2 and separate variables, the first-order equation becomes

dx = −
√
b− y√

C1 − (b− y)
dy.

Through the substitution

b− y = C1 sin2(φ/2), −dy = C1 sin(φ/2) cos(φ/2)dφ,

we obtain

dx =

√
C1 sinφ/2√

C1(1− sin2 φ/2)
C1 sin(φ/2) cos(φ/2) dφ

= C1 sin2(φ/2) dφ

=
C1

2

(
1− cosφ

)
dφ.

Integration gives

x =
C1

2

(
φ− sinφ

)
+ C2.

The functions x and y of φ are parametric equations for a cycloid.


