Math 521 Lecture #34
§4.4: Generalizations

In the simplest variational problem the Lagrangian L depended on three scalar quantities
x, y, and 3.

Obvious generalizations of this are (1) to include higher-order derivatives of y in the
Lagrangian, and to include more than one function y.

§4.2.1: Higher Derivatives. For a C? function L of four scalar variables, we consider
the second-order variational problem given by the functional

b
J(y) = / L(z,y,y.y") dx
on the admissible set
A={yeCa,b]:y(a) = A1,y (a) = Az,y(b) = B1,y'(b) = Bo}.

In seeking necessary conditions for yy € A to be a minimizer of J on A, we will see the
need to have y € C*[a, b] instead of C3[a, b].

Suppose that yy € A is a local minimizer of J with respect to some norm on C*[a, b].

An admissible variation if h € C*[a, b] such that
h(a) = h'(a) = h(b) = h'(b) = 0.

Then J(yo+€h) is defined for all small €, and the first variation of J at y, in the direction
of h is

d
8J(yo, h) = EJ(Z/U + €h)

e=0
b

= L(z,yo + €h,yo + €l yg + €h”) du
€ a

e=0

b
0
= / aL(x, Yo + eh, yy + eh', yy + eh”) da

e=0
b
= / [Ly('ru Yo, y67 Z/g)h + Ly/(ﬂf, Yo, 2/6; yg)h/ + Ly//<.T, Yo, y67 y(gl)h//} dz.
For the middle term of the integrand, we proceed as before with integration by parts and

the conditions h(a) = 0 and h(b) = 0 to get

’ b d / "
- . %Ly’(%yoaym%)h dr

b
/ Ly’('xaymy[lbyg)h/ dr = Ly/(x7y0>y67yg)h

a

b
d
= _/a %Ly’(xaymyé)ayé’)h dx.

For the third term in the integrand, we use integration by parts twice along with the zero
values of h and h' at x = a and x = b.



Doing this gives

b b
- iL (2, Y0, Yo, Yo ) dz
. " dx Y » JU5 J0s J0

b

b
/ Ly//(x,y()’ y67yg)h// dl’ = Ly//(ﬂj, y07y6’y(l)/>h/
a

b 72
d
= —Lyr(, Y0, Yo, Yo ) +/ Za L (@40, y0, yo) e de

a

/ —L ” ,I y07y6,y6/)h dl'

Thus we have that
b d d2
dJ(yo, h) = /{; {Ly — %Ly/ + ELZJH} h dx
where L,, L,, and L, are evaluated at (z, yo, ¥y, Y5 )-

Because yy is a local minimizer, we have that 0.J(yo, h) = 0 for all admissible variations
h € C%[a, b] satisfying the conditions h(a) = 0, h(b) = 0, W/(a) = 0, K'(b) = 0.

To get the Euler equation, we need another version of the fundamental lemma, the proof
of which is similar to the earlier version.

Lemma 4.19. If f is a continuous function on [a, b], and if

[ s
for all h € C*[a,b] with h(a) = 0, h(b) = 0, '(0) = 0, '(b) = 0, then f(z) = 0 for all

x € [a,b].

By the Fundamental Lemma, we arrive at the fourth-order Euler equation,

d d?
L/—F—Ly//:O, aﬁ:vﬁb

L — =
Yoode Y da?

We assumed that y € C*[a, b] because the third term in the Euler equation generally
requires taking the fourth derivative of y.

The n'"-order variational problem is given by the functional

b
J(y) = / L(z,yy", ..., y")dz
on the admissible set
The Euler equation for the n'" variational problem is

d & o
Ly — %Ly/ -+ @Ly// + .-+ (—1) dany<n) = 0.



§:4.4.2: Several Functions. Another generalization of the simplest variational prob-
lem is when J depends on several functions yi,ya, ..., Yn.

When n = 2, the functional is

b
J(yhyQ) :/ L(%iyl,yz,y/l’yé) dt

on the admissible set
A=A{(y1,12) € CQ[a, b] x CQ[a,b] cyi(a) = Aj,yi(b) = Biyi = 1,2}

Suppose that the pair (71, 72) € A provides a local minimum (relative to a choice of norm

on A).

We vary each of y; and y, independently with admissible variations hy, hy € C?[a,b]
satisfying
h1<a) = hg((l) = hl(b) = hg(b) =0.

Then )
j(E) = / L(xayl + €h17y, + 6h’/17y2 + €h2; yé + EhIQ) dx

has a local minimum at € = 0 so that
b
0= j’(o) = / (Ly1h1 + Lyihll + Ly2h2 + Lyéhé)dﬁ
Integration by parts on the terms with A} and hl, gives

’ d d
Lyl — %Lyi h1 -+ Ly2 — %Lyé ]’LQ dr =0

which holds for all admissible pairs (hq, hg).

By choosing hy = 0, we get
b d
/a (Ly1 — @Lyi) h1 dr = O,

and so by the fundamental lemma we obtain

d

Ly1 - %Lyll — 0
Similarly, by choosing instead h; = 0 we obtain
d
Ly2 - @Lyé - O

Thus the minimizing pair (7, 92) satisfies the system of (second-order) Euler equations
given above.

The generalization to n functions y1, ys, ..., y, is straightforward.



