Math 521 Lecture \#34

§4.4: Generalizations

In the simplest variational problem the Lagrangian L depended on three scalar quantities x, y, and y^{\prime}.
Obvious generalizations of this are (1) to include higher-order derivatives of y in the Lagrangian, and to include more than one function y.
$\S 4.2 .1$: Higher Derivatives. For a C^{2} function L of four scalar variables, we consider the second-order variational problem given by the functional

$$
J(y)=\int_{a}^{b} L\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x
$$

on the admissible set

$$
A=\left\{y \in C^{4}[a, b]: y(a)=A_{1}, y^{\prime}(a)=A_{2}, y(b)=B_{1}, y^{\prime}(b)=B_{2}\right\}
$$

In seeking necessary conditions for $y_{0} \in A$ to be a minimizer of J on A, we will see the need to have $y \in C^{4}[a, b]$ instead of $C^{3}[a, b]$.
Suppose that $y_{0} \in A$ is a local minimizer of J with respect to some norm on $C^{4}[a, b]$.
An admissible variation if $h \in C^{4}[a, b]$ such that

$$
h(a)=h^{\prime}(a)=h(b)=h^{\prime}(b)=0 .
$$

Then $J\left(y_{0}+\epsilon h\right)$ is defined for all small ϵ, and the first variation of J at y_{0} in the direction of h is

$$
\begin{aligned}
\delta J\left(y_{0}, h\right) & =\left.\frac{d}{d \epsilon} J\left(y_{0}+\epsilon h\right)\right|_{\epsilon=0} \\
& =\left.\frac{d}{d \epsilon} \int_{a}^{b} L\left(x, y_{0}+\epsilon h, y_{0}^{\prime}+\epsilon h^{\prime}, y_{0}^{\prime \prime}+\epsilon h^{\prime \prime}\right) d x\right|_{\epsilon=0} \\
& =\left.\int_{a}^{b} \frac{\partial}{\partial \epsilon} L\left(x, y_{0}+\epsilon h, y_{0}^{\prime}+\epsilon h^{\prime}, y_{0}^{\prime \prime}+\epsilon h^{\prime \prime}\right) d x\right|_{\epsilon=0} \\
& =\int_{a}^{b}\left[L_{y}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h+L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h^{\prime}+L_{y^{\prime \prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h^{\prime \prime}\right] d x
\end{aligned}
$$

For the middle term of the integrand, we proceed as before with integration by parts and the conditions $h(a)=0$ and $h(b)=0$ to get

$$
\begin{aligned}
\int_{a}^{b} L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h^{\prime} d x & =\left.L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h\right|_{a} ^{b}-\int_{a}^{b} \frac{d}{d x} L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h d x \\
& =-\int_{a}^{b} \frac{d}{d x} L_{y^{\prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h d x
\end{aligned}
$$

For the third term in the integrand, we use integration by parts twice along with the zero values of h and h^{\prime} at $x=a$ and $x=b$.

Doing this gives

$$
\begin{aligned}
\int_{a}^{b} L_{y^{\prime \prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h^{\prime \prime} d x & =\left.L_{y^{\prime \prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h^{\prime}\right|_{a} ^{b}-\int_{a}^{b} \frac{d}{d x} L_{y^{\prime \prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h^{\prime} d x \\
& =-\left.L_{y^{\prime \prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h\right|_{a} ^{b}+\int_{a}^{b} \frac{d^{2}}{d x^{2}} L_{y^{\prime \prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h d x \\
& =\int_{a}^{b} \frac{d^{2}}{d x^{2}} L_{y^{\prime \prime}}\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right) h d x
\end{aligned}
$$

Thus we have that

$$
\delta J\left(y_{0}, h\right)=\int_{a}^{b}\left[L_{y}-\frac{d}{d x} L_{y^{\prime}}+\frac{d^{2}}{d x^{2}} L_{y^{\prime \prime}}\right] h d x
$$

where $L_{y}, L_{y^{\prime}}$, and $L_{y^{\prime \prime}}$ are evaluated at $\left(x, y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right)$.
Because y_{0} is a local minimizer, we have that $\delta J\left(y_{0}, h\right)=0$ for all admissible variations $h \in C^{4}[a, b]$ satisfying the conditions $h(a)=0, h(b)=0, h^{\prime}(a)=0, h^{\prime}(b)=0$.
To get the Euler equation, we need another version of the fundamental lemma, the proof of which is similar to the earlier version.
Lemma 4.19. If f is a continuous function on $[a, b]$, and if

$$
\int_{a}^{b} f(x) h(x)=0
$$

for all $h \in C^{4}[a, b]$ with $h(a)=0, h(b)=0, h^{\prime}(0)=0, h^{\prime}(b)=0$, then $f(x)=0$ for all $x \in[a, b]$.
By the Fundamental Lemma, we arrive at the fourth-order Euler equation,

$$
L_{y}-\frac{d}{d x} L_{y^{\prime}}+\frac{d^{2}}{d x^{2}} L_{y^{\prime \prime}}=0, a \leq x \leq b
$$

We assumed that $y \in C^{4}[a, b]$ because the third term in the Euler equation generally requires taking the fourth derivative of y.
The $n^{\text {th }}$-order variational problem is given by the functional

$$
J(y)=\int_{a}^{b} L\left(x, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right) d x
$$

on the admissible set

$$
A=\left\{y \in C^{2 n}[a, b]: y^{(i)}(a)=A_{i}, y^{(i)}(b)=B_{i}, i=0, \ldots, n-1\right\} .
$$

The Euler equation for the $n^{\text {th }}$ variational problem is

$$
L_{y}-\frac{d}{d x} L_{y^{\prime}}+\frac{d^{2}}{d x^{2}} L_{y^{\prime \prime}}+\cdots+(-1)^{n} \frac{d^{n}}{d x^{n}} L_{y^{(n)}}=0
$$

$\S: 4.4 .2$: Several Functions. Another generalization of the simplest variational problem is when J depends on several functions $y_{1}, y_{2}, \ldots, y_{n}$.
When $n=2$, the functional is

$$
J\left(y_{1}, y_{2}\right)=\int_{a}^{b} L\left(x, y_{1}, y_{2}, y_{1}^{\prime}, y_{2}^{\prime}\right) d t
$$

on the admissible set

$$
A=\left\{\left(y_{1}, y_{2}\right) \in C^{2}[a, b] \times C^{2}[a, b]: y_{i}(a)=A_{i}, y_{i}^{\prime}(b)=B_{i}, i=1,2\right\} .
$$

Suppose that the pair ($\left.\tilde{y}_{1}, \tilde{y}_{2}\right) \in A$ provides a local minimum (relative to a choice of norm on A).
We vary each of y_{1} and y_{2} independently with admissible variations $h_{1}, h_{2} \in C^{2}[a, b]$ satisfying

$$
h_{1}(a)=h_{2}(a)=h_{1}(b)=h_{2}(b)=0
$$

Then

$$
\mathcal{J}(\epsilon)=\int_{a}^{b} L\left(x, y_{1}+\epsilon h_{1}, y^{\prime}+\epsilon h_{1}^{\prime}, y_{2}+\epsilon h_{2}, y_{2}^{\prime}+\epsilon h_{2}^{\prime}\right) d x
$$

has a local minimum at $\epsilon=0$ so that

$$
0=\mathcal{J}^{\prime}(0)=\int_{a}^{b}\left(L_{y_{1}} h_{1}+L_{y_{1}^{\prime}} h_{1}^{\prime}+L_{y_{2}} h_{2}+L_{y_{2}^{\prime}} h_{2}^{\prime}\right) d x .
$$

Integration by parts on the terms with h_{1}^{\prime} and h_{2}^{\prime} gives

$$
\int_{a}^{b}\left\{\left(L_{y_{1}}-\frac{d}{d x} L_{y_{1}^{\prime}}\right) h_{1}+\left(L_{y_{2}}-\frac{d}{d x} L_{y_{2}^{\prime}}\right) h_{2}\right\} d x=0
$$

which holds for all admissible pairs $\left(h_{1}, h_{2}\right)$.
By choosing $h_{2}=0$, we get

$$
\int_{a}^{b}\left(L_{y_{1}}-\frac{d}{d x} L_{y_{1}^{\prime}}\right) h_{1} d x=0,
$$

and so by the fundamental lemma we obtain

$$
L_{y_{1}}-\frac{d}{d x} L_{y_{1}^{\prime}}=0 .
$$

Similarly, by choosing instead $h_{1}=0$ we obtain

$$
L_{y_{2}}-\frac{d}{d x} L_{y_{2}^{\prime}}=0 .
$$

Thus the minimizing pair ($\tilde{y}_{1}, \tilde{y}_{2}$) satisfies the system of (second-order) Euler equations given above.
The generalization to n functions $y_{1}, y_{2}, \ldots, y_{n}$ is straightforward.

