Math 521 Lecture #34§4.4: Generalizations

In the simplest variational problem the Lagrangian L depended on three scalar quantities x, y, and y'.

Obvious generalizations of this are (1) to include higher-order derivatives of y in the Lagrangian, and to include more than one function y.

§4.2.1: Higher Derivatives. For a C^2 function L of four scalar variables, we consider the *second-order* variational problem given by the functional

$$J(y) = \int_a^b L(x, y, y', y'') \, dx$$

on the admissible set

$$A = \{ y \in C^4[a, b] : y(a) = A_1, y'(a) = A_2, y(b) = B_1, y'(b) = B_2 \}$$

In seeking necessary conditions for $y_0 \in A$ to be a minimizer of J on A, we will see the need to have $y \in C^4[a, b]$ instead of $C^3[a, b]$.

Suppose that $y_0 \in A$ is a local minimizer of J with respect to some norm on $C^4[a, b]$. An admissible variation if $h \in C^4[a, b]$ such that

$$h(a) = h'(a) = h(b) = h'(b) = 0.$$

Then $J(y_0 + \epsilon h)$ is defined for all small ϵ , and the first variation of J at y_0 in the direction of h is

$$\begin{split} \delta J(y_0,h) &= \left. \frac{d}{d\epsilon} J(y_0 + \epsilon h) \right|_{\epsilon=0} \\ &= \left. \frac{d}{d\epsilon} \int_a^b L(x,y_0 + \epsilon h,y_0' + \epsilon h',y_0'' + \epsilon h'') dx \right|_{\epsilon=0} \\ &= \left. \int_a^b \left. \frac{\partial}{\partial \epsilon} L(x,y_0 + \epsilon h,y_0' + \epsilon h',y_0'' + \epsilon h'') dx \right|_{\epsilon=0} \\ &= \left. \int_a^b \left[L_y(x,y_0,y_0',y_0'')h + L_{y'}(x,y_0,y_0',y_0'')h' + L_{y''}(x,y_0,y_0',y_0'')h'' \right] dx. \end{split}$$

For the middle term of the integrand, we proceed as before with integration by parts and the conditions h(a) = 0 and h(b) = 0 to get

$$\begin{split} \int_{a}^{b} L_{y'}(x, y_0, y'_0, y''_0) h' \, dx &= L_{y'}(x, y_0, y'_0, y''_0) h \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dx} L_{y'}(x, y_0, y'_0, y''_0) h \, dx \\ &= -\int_{a}^{b} \frac{d}{dx} L_{y'}(x, y_0, y'_0, y''_0) h \, dx. \end{split}$$

For the third term in the integrand, we use integration by parts twice along with the zero values of h and h' at x = a and x = b.

Doing this gives

$$\begin{split} \int_{a}^{b} L_{y''}(x, y_{0}, y_{0}', y_{0}'')h'' \, dx &= L_{y''}(x, y_{0}, y_{0}', y_{0}'')h' \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dx} L_{y''}(x, y_{0}, y_{0}', y_{0}'')h' \, dx \\ &= -L_{y''}(x, y_{0}, y_{0}', y_{0}'')h \Big|_{a}^{b} + \int_{a}^{b} \frac{d^{2}}{dx^{2}} L_{y''}(x, y_{0}, y_{0}', y_{0}'')h \, dx \\ &= \int_{a}^{b} \frac{d^{2}}{dx^{2}} L_{y''}(x, y_{0}, y_{0}', y_{0}'')h \, dx. \end{split}$$

Thus we have that

$$\delta J(y_0, h) = \int_a^b \left[L_y - \frac{d}{dx} L_{y'} + \frac{d^2}{dx^2} L_{y''} \right] h \, dx$$

where L_y , $L_{y'}$, and $L_{y''}$ are evaluated at (x, y_0, y'_0, y''_0) .

Because y_0 is a local minimizer, we have that $\delta J(y_0, h) = 0$ for all admissible variations $h \in C^4[a, b]$ satisfying the conditions h(a) = 0, h(b) = 0, h'(a) = 0, h'(b) = 0.

To get the Euler equation, we need another version of the *fundamental lemma*, the proof of which is similar to the earlier version.

Lemma 4.19. If f is a continuous function on [a, b], and if

$$\int_{a}^{b} f(x)h(x) = 0$$

for all $h \in C^4[a, b]$ with h(a) = 0, h(b) = 0, h'(0) = 0, h'(b) = 0, then f(x) = 0 for all $x \in [a, b]$.

By the Fundamental Lemma, we arrive at the *fourth-order* Euler equation,

$$L_y - \frac{d}{dx}L_{y'} + \frac{d^2}{dx^2}L_{y''} = 0, \ a \le x \le b.$$

We assumed that $y \in C^4[a, b]$ because the third term in the Euler equation generally requires taking the fourth derivative of y.

The n^{th} -order variational problem is given by the functional

$$J(y) = \int_a^b L(x, y', y'', \dots, y^{(n)}) dx$$

on the admissible set

$$A = \{ y \in C^{2n}[a, b] : y^{(i)}(a) = A_i, y^{(i)}(b) = B_i, i = 0, \dots, n-1 \}.$$

The Euler equation for the n^{th} variational problem is

$$L_y - \frac{d}{dx}L_{y'} + \frac{d^2}{dx^2}L_{y''} + \dots + (-1)^n \frac{d^n}{dx^n}L_{y^{(n)}} = 0.$$

§:4.4.2: Several Functions. Another generalization of the simplest variational problem is when J depends on several functions y_1, y_2, \ldots, y_n .

When n = 2, the functional is

$$J(y_1, y_2) = \int_a^b L(x, y_1, y_2, y'_1, y'_2) dt$$

on the admissible set

$$A = \{(y_1, y_2) \in C^2[a, b] \times C^2[a, b] : y_i(a) = A_i, y'_i(b) = B_i, i = 1, 2\}.$$

Suppose that the pair $(\tilde{y}_1, \tilde{y}_2) \in A$ provides a local minimum (relative to a choice of norm on A).

We vary each of y_1 and y_2 independently with admissible variations $h_1, h_2 \in C^2[a, b]$ satisfying

$$h_1(a) = h_2(a) = h_1(b) = h_2(b) = 0$$

Then

$$\mathcal{J}(\epsilon) = \int_a^b L(x, y_1 + \epsilon h_1, y' + \epsilon h'_1, y_2 + \epsilon h_2, y'_2 + \epsilon h'_2) dx$$

has a local minimum at $\epsilon = 0$ so that

$$0 = \mathcal{J}'(0) = \int_a^b \left(L_{y_1} h_1 + L_{y_1'} h_1' + L_{y_2} h_2 + L_{y_2'} h_2' \right) dx.$$

Integration by parts on the terms with h'_1 and h'_2 gives

$$\int_{a}^{b} \left\{ \left(L_{y_{1}} - \frac{d}{dx} L_{y_{1}'} \right) h_{1} + \left(L_{y_{2}} - \frac{d}{dx} L_{y_{2}'} \right) h_{2} \right\} dx = 0$$

which holds for all admissible pairs (h_1, h_2) .

By choosing $h_2 = 0$, we get

$$\int_{a}^{b} \left(L_{y_1} - \frac{d}{dx} L_{y_1'} \right) h_1 \, dx = 0,$$

and so by the fundamental lemma we obtain

$$L_{y_1} - \frac{d}{dx}L_{y_1'} = 0$$

Similarly, by choosing instead $h_1 = 0$ we obtain

$$L_{y_2} - \frac{d}{dx}L_{y_2'} = 0.$$

Thus the minimizing pair $(\tilde{y}_1, \tilde{y}_2)$ satisfies the system of (second-order) Euler equations given above.

The generalization to n functions y_1, y_2, \ldots, y_n is straightforward.