
Math 521 Lecture #34
§4.4: Generalizations

In the simplest variational problem the Lagrangian L depended on three scalar quantities
x, y, and y′.

Obvious generalizations of this are (1) to include higher-order derivatives of y in the
Lagrangian, and to include more than one function y.

§4.2.1: Higher Derivatives. For a C2 function L of four scalar variables, we consider
the second-order variational problem given by the functional

J(y) =

∫ b

a

L(x, y, y′, y′′) dx

on the admissible set

A = {y ∈ C4[a, b] : y(a) = A1, y
′(a) = A2, y(b) = B1, y

′(b) = B2}.

In seeking necessary conditions for y0 ∈ A to be a minimizer of J on A, we will see the
need to have y ∈ C4[a, b] instead of C3[a, b].

Suppose that y0 ∈ A is a local minimizer of J with respect to some norm on C4[a, b].

An admissible variation if h ∈ C4[a, b] such that

h(a) = h′(a) = h(b) = h′(b) = 0.

Then J(y0+εh) is defined for all small ε, and the first variation of J at y0 in the direction
of h is

δJ(y0, h) =
d

dε
J(y0 + εh)

∣∣∣∣
ε=0

=
d

dε

∫ b

a

L
(
x, y0 + εh, y′0 + εh′, y′′0 + εh′′

)
dx

∣∣∣∣
ε=0

=

∫ b

a

∂

∂ε
L
(
x, y0 + εh, y′0 + εh′, y′′0 + εh′′

)
dx

∣∣∣∣
ε=0

=

∫ b

a

[
Ly(x, y0, y

′
0, y

′′
0)h+ Ly′(x, y0, y

′
0, y

′′
0)h′ + Ly′′(x, y0, y

′
0, y

′′
0)h′′

]
dx.

For the middle term of the integrand, we proceed as before with integration by parts and
the conditions h(a) = 0 and h(b) = 0 to get∫ b

a

Ly′(x, y0, y
′
0, y

′′
0)h′ dx = Ly′(x, y0, y

′
0, y

′′
0)h

∣∣∣∣b
a

−
∫ b

a

d

dx
Ly′(x, y0, y

′
0, y

′′
0)h dx

= −
∫ b

a

d

dx
Ly′(x, y0, y

′
0, y

′′
0)h dx.

For the third term in the integrand, we use integration by parts twice along with the zero
values of h and h′ at x = a and x = b.



Doing this gives∫ b

a

Ly′′(x, y0, y
′
0, y

′′
0)h′′ dx = Ly′′(x, y0, y

′
0, y

′′
0)h′

∣∣∣∣b
a

−
∫ b

a

d

dx
Ly′′(x, y0, y

′
0, y

′′
0)h′ dx

= −Ly′′(x, y0, y′0, y′′0)h

∣∣∣∣b
a

+

∫ b

a

d2

dx2
Ly′′(x, y0, y

′
0, y

′′
0)h dx

=

∫ b

a

d2

dx2
Ly′′(x, y0, y

′
0, y

′′
0)h dx.

Thus we have that

δJ(y0, h) =

∫ b

a

[
Ly −

d

dx
Ly′ +

d2

dx2
Ly′′

]
h dx

where Ly, Ly′ , and Ly′′ are evaluated at (x, y0, y
′
0, y

′′
0).

Because y0 is a local minimizer, we have that δJ(y0, h) = 0 for all admissible variations
h ∈ C4[a, b] satisfying the conditions h(a) = 0, h(b) = 0, h′(a) = 0, h′(b) = 0.

To get the Euler equation, we need another version of the fundamental lemma, the proof
of which is similar to the earlier version.

Lemma 4.19. If f is a continuous function on [a, b], and if∫ b

a

f(x)h(x) = 0

for all h ∈ C4[a, b] with h(a) = 0, h(b) = 0, h′(0) = 0, h′(b) = 0, then f(x) = 0 for all
x ∈ [a, b].

By the Fundamental Lemma, we arrive at the fourth-order Euler equation,

Ly −
d

dx
Ly′ +

d2

dx2
Ly′′ = 0, a ≤ x ≤ b.

We assumed that y ∈ C4[a, b] because the third term in the Euler equation generally
requires taking the fourth derivative of y.

The nth-order variational problem is given by the functional

J(y) =

∫ b

a

L(x, y′, y′′, . . . , y(n))dx

on the admissible set

A = {y ∈ C2n[a, b] : y(i)(a) = Ai, y
(i)(b) = Bi, i = 0, . . . , n− 1}.

The Euler equation for the nth variational problem is

Ly −
d

dx
Ly′ +

d2

dx2
Ly′′ + · · ·+ (−1)n

dn

dxn
Ly(n) = 0.



§:4.4.2: Several Functions. Another generalization of the simplest variational prob-
lem is when J depends on several functions y1, y2, . . . , yn.

When n = 2, the functional is

J(y1, y2) =

∫ b

a

L(x, y1, y2, y
′
1, y

′
2) dt

on the admissible set

A = {(y1, y2) ∈ C2[a, b]× C2[a, b] : yi(a) = Ai, y
′
i(b) = Bi, i = 1, 2}.

Suppose that the pair (ỹ1, ỹ2) ∈ A provides a local minimum (relative to a choice of norm
on A).

We vary each of y1 and y2 independently with admissible variations h1, h2 ∈ C2[a, b]
satisfying

h1(a) = h2(a) = h1(b) = h2(b) = 0.

Then

J (ε) =

∫ b

a

L(x, y1 + εh1, y
′ + εh′1, y2 + εh2, y

′
2 + εh′2) dx

has a local minimum at ε = 0 so that

0 = J ′(0) =

∫ b

a

(
Ly1h1 + Ly′1h

′
1 + Ly2h2 + Ly′2h

′
2

)
dx.

Integration by parts on the terms with h′1 and h′2 gives∫ b

a

{(
Ly1 −

d

dx
Ly′1

)
h1 +

(
Ly2 −

d

dx
Ly′2

)
h2

}
dx = 0

which holds for all admissible pairs (h1, h2).

By choosing h2 = 0, we get ∫ b

a

(
Ly1 −

d

dx
Ly′1

)
h1 dx = 0,

and so by the fundamental lemma we obtain

Ly1 −
d

dx
Ly′1 = 0.

Similarly, by choosing instead h1 = 0 we obtain

Ly2 −
d

dx
Ly′2 = 0.

Thus the minimizing pair (ỹ1, ỹ2) satisfies the system of (second-order) Euler equations
given above.

The generalization to n functions y1, y2, . . . , yn is straightforward.


