
Math 521 Lecture #39
§4.6: Isoperimetric Problem

We review the Lagrange multiplier rule from multivariable calculus.

Theorem 4.28. Suppose f(x, y) and g(x, y) are differentiable functions on open sets
containing (x0, y0) such that ∇g(x0, y0) 6= 0. If f has an extreme value at (x0, y0) subject
to the constraint g(x, y) = c (i.e., g(x0, y0) = c), then there exists λ such that the function
f ∗ = f + λg satisfies ∇f ∗(x0, y0) = 0.

Typically the Lagrange multiplier can be eliminated from the systems of equations
∇f ∗(x0, y0) = 0 and g(x0, y0) = c, thereby enabling the finding of candidate points
(x0, y0) at which the constrained optimization problem may have a solution.

We will show how to apply the Lagrange multiplier rule to a functional subject to a
certain kind of constraint.

For C2 functions L(x, y, y′) and G(x, y, y′), the variational problem of minimizing the
functional

J(y) =

∫ b

a

L(x, y, y′) dx

subject to the integral constraint

W (y) =

∫ b

a

G(x, y, y′) dx = k,

for a constant k, where y ∈ C2[a, b] and y(a) = ya and y(b) = yb, is known as isoperi-
metric problem.

The equation W (y) = k is known as an isoperimetric constraint.

We suppose that y0 is a local minimum of the functional J(y) that satisfies the isoperi-
metric constraint.

For the variation of y0, the one-parameter family z = y0 + εh may not satisfy the isoperi-
metric constraint.

We can resolve this issue by using a two-parameter family of variations

z = y0 + ε1h1 + εh2

for h1, h2 ∈ C2[a, b] with hi(a) = hi(b) = 0 for i = 1, 2.

To make this work, we assume that W does not have an extremum at y0.

Then for any choice of h1 and h2 there will be choices of ε1 and ε2 near (0, 0) such that

W (z) = k.

Evaluation of J and W on the two-parameter family of variations z gives functions

J (ε1, ε2) =

∫ b

a

L(x, z, z′) dt



and

W(ε1, ε2) =

∫ b

a

G(x, z, z′) dt = k.

Because y0 is a local minimum of J(y) subject to the isoperimetric constraint, the
point (ε1, ε2) = (0, 0) is where J (ε1, ε2) has a local minimum subject to the constraint
W(ε1, ε2) = k.

We can thus apply the Lagrange multiplier rule to J subject to W = k.

There is a Lagrange multiplier λ for which the function J ∗ = J + λW satisfies

∇J ∗(0, 0) = (0, 0).

Now

J ∗ =

∫ b

a

L(x, z, z′) dx+ λ

∫ b

a

G(x, z, z′) dt =

∫ b

a

(
L(x, z, z′) + λG(x, z, z′)

)
dt.

We define the auxiliary function to be the integrand:

L∗(x, z, z′) = L(x, z, z′) + λG(x, z, z′).

The partial derivatives of J ∗ at (ε1, ε2) = (0, 0) are

∂J ∗

∂εi
(0, 0) =

∫ b

a

(
L∗y(x, y0, y

′
0)hi + L∗y′(x, y0, y

′
0)h
′
i

)
dx, i = 1, 2.

Integration by parts on the second term in the integral and the values of hi are the
endpoints gives

∂J ∗

∂εi
(0, 0) =

∫ b

a

(
L∗y(x, y0, y

′
0)−

d

dx
L∗y′(x, y0, y

′
0)

)
hi dx, i = 1, 2.

Because of the arbitrariness of h1 and h2, the Fundamental Lemma gives the Euler-
Lagrange equation

L∗y(x, y, y
′)− d

dx
L∗y′(x, y, y

′) = 0

which the local minimizer y0 must satisfy.

The solutions of the Euler-Lagrange equations will involve two arbitrary constants and
the Lagrange multiplier λ.

These may be determined from the conditions y(a) = ya and y(b) = yb, and the substi-
tution of y0 into the isoperimetric constraint (thereby bringing in the value k).

Example 4.29. What is the shape of a rope of length l and constant linear density ρ
that is suspended between two fixed points (a, ya) and (b, yb)?

We can answer this with an isoperimetric problem.

Let y(x) be any shape of the rope with the assumption that y(x) > 0.



A small segment of the rope has length ds and a mass of ρds.

The potential energy acting on the small segment of the rope is that determined by
gravity acting, and is ρgyds relative to y = 0.

The total potential energy of the rope is the functional

J(y) =

∫ 1

0

ρgy ds =

∫ b

a

ρgy
√

1 + [y′]2 dx.

There is no kinetic energy because we are considering the rope in an equilibrium position
of hanging between two fixed points.

The shape of the curve of the hanging rope is the function y(x) that minimizes the
potential energy.

The isoperimetric constraint is the constant length l of the rope, and is the integral

W (y) =

∫ b

a

√
1 + [y′]2 dx = l.

For the Lagrange multiplier λ, the auxiliary function here is

L∗ = L+ λG = ρgy
√

1 + [y′]2 + λ
√

1 + [y′]2.

The Euler-Lagrange equations are

0 = Ly −
d

dx
Ly′ = ρg

√
1 + [y′]2 − d

dx

(
ρgyy′√
1 + [y′]2

+
λy′√

1 + [y′]2

)
.

Rather than solving this nonlinear second-order ODE, we recognize that the auxiliary
function L∗ does not depend on x, so there is a first integral,

C = L∗ − y′L∗y′

= ρgy
√

1 + [y′]2 + λ
√

1 + [y′]2 − y′
(

ρgyy′√
1 + [y′]2

+
λy′√

1 + [y′]2

)

= (ρgy + λ)
√

1 + [y′]2 − (ρgy + λ)

(
[y′]2√

1 + [y′]2

)

= (ρgy + λ)

(√
1 + [y′]2 − [y′]2√

1 + [y′]2

)

= (ρgy + λ)

(
1√

1 + [y′]2

)
.

Solving for y′ gives
C2[y′]2 = (ρgy + λ)2 − C2.



Separation of variables gives

dy√
(ρgy + λ)2 − C2

=
dx

C
.

The substitution u = ρgy + λ gives

du

ρg
√
u2 − C2

=
dx

C
.

Integration of this gives
1

ρg
cosh−1

( u
C

)
=
x

C
+ C2.

Undoing the substitution we get the solutions

y = − λ

ρg
+
C

ρg
cosh

(ρgx
C

+ C2

)
.

This necessary condition for the shape of the hanging rope is known as a catenary.


