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Abstract. We find a lower bound on the number of imaginary qua-
dratic extensions of the function field Fq(T ) whose class groups have an
element of a fixed order.

More precisely, let q ≥ 5 be a power of an odd prime and let g be a

fixed positive integer ≥ 3. There are � q
`( 1

2+ 1
g
)

polynomials D ∈ Fq[T ]
with deg(D) ≤ ` such that the class groups of the quadratic extensions

Fq(T,
√

D) have an element of order g.

1. Introduction

In a recent paper Murty [11] showed that if g is a fixed integer ≥ 3 then
the number of imaginary quadratic fields whose absolute discriminant is ≤ x

and whose class group has an element of order g is � x
1
2
+ 1

g . He also showed
that the number of real quadratic fields whose discriminant is ≤ x and whose
class group has an element of order g is � x

1
2g .

In this paper we prove the analogous result for function fields rather than
number fields in the analog of the imaginary quadratic case.

The problem of divisibility of class numbers for number fields has been
studied extensively. Gauss studied the case g = 2. The case g = 3 was
studied by Davenport and Heilbronn [4]. For any g the infinitude of such
fields was established by Nagell [12], Honda [9], Ankeny and Chowla [2],
Hartung [8], Yamamoto [14], and Weinberger [13]. Assuming the ABC Con-
jecture Murty [10] obtained a quantitative lower bound on the number of
such fields. More recently Murty [11] improved the technique to give the
result mentioned earlier without assuming the ABC conjecture. A conjec-
ture of Cohen and Lenstra [3] predicts that as x increases a positive fraction
of discriminants ≤ x produce quadratic extensions whose class number is
divisible by any fixed g.

Interest in function fields was stimulated by the doctoral thesis of E. Artin
[1] and the class number problem for function fields has been studied. For
example, if g is not divisible by q then Friesen [7] constructed infinitely many
polynomials M ∈ Fq[T ] of even degree such the class groups of the quadratic
extensions Fq(T,

√
M) of the function field Fq(T ) have an element of order
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g. Friedman and Washington [6] have studied the Cohen-Lenstra conjecture
in the function field case, and Yu [15] has established the Cohen-Lenstra
conjecture as the characteristic p tends to infinity for fixed discriminantal
degree.

We now state the main result of this paper:
Theorem. Let q ≥ 5 be a power of an odd prime and let g be a fixed positive
integer ≥ 3. There are � q

`( 1
2
+ 1

g
) quadratic extensions Fq(T,

√
D) of Fq(T )

with deg(D) ≤ ` whose class group has an element of order g.
The remainder of this paper will present the proof as a series of lemmas.

The main outline is as follows. We show that if n and m are monic elements
of Fq[T ], if −a ∈ F×q is not a square, if deg(mg) > deg(n2), and if D =
n2 − amg is squarefree, then the class group of Fq(T,

√
D) has an element

of order g. Using sieve methods and by letting m and n vary we are able
to give a lower bound on the number of m and n such that D is squarefree.
Finally, we show that as m and n vary there are relatively few duplicated
values of D.

2. Preliminaries

Fq will denote the finite field with q elements where q is a power of an
odd prime. R = Fq[T ] is the polynomial ring with coefficients in Fq over the
indeterminate T and the function field Fq(T ) is the field of fractions of R.
We will assume that g is an odd integer that is relatively prime to q.

The symbol p will always represent a monic irreducible polynomial in R.
The symbols n and m will also be monic (but not necessarily irreducible)
polynomials in R of degrees j and k respectively. The expression

∑
m f(m)

would mean to sum f(m) over all monic polynomials m of fixed degree k.
If a and b are elements of R, then (a, b) represents the greatest common
(monic) divisor of a and b. If a and b are ordinary integers then (a, b) will
denote the greatest common divisor in the usual sense.

3. Class groups with elements of order g

In the following lemma we construct quadratic extensions of Fq(T ) whose
class groups contain elements of order g.
Lemma 1. Let g be a positive integer ≥ 3. Assume n, m ∈ R are monic,
−a ∈ F×q is not a square, deg(mg) > deg(n2), and D = n2 − amg is square-
free. Then the class group for Fq(T,

√
D) has an element of order g.

Proof. First we note that (n, m) = 1 because if there were a common factor
of n and m then D would not be squarefree. We factor amg as

amg = n2 −D = (n +
√

D)(n−
√

D).

Suppose I|(n +
√

D) and I|(n −
√

D). Then n +
√

D ∈ I and n −
√

D ∈ I

which implies that n, D ∈ I and I = R = Fq[T ]. Thus the ideals (n +
√

D)
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and (n−
√

D) are relatively prime. Therefore

(m)g = (n +
√

D)(n−
√

D) = aga′
g

where a and a′ are ideals such that (n +
√

D) = ag and (n −
√

D) = a′g.
Taking norms we find that N(m) = q2 deg(m) = N(a)2 so that N(a) =
qdeg(m). Now suppose that ar is principal for some r < g:

ar = (u + v
√

D).

Then

N(a)r = qr deg(m) = N(u + v
√

D) = qdeg(u2−v2D)

and because the leading coefficient of v2D is not a square this is

≥ qdeg(D) = qdeg(n2−amg) = qdeg(mg)

= N(a)g.

This is a contradiction unless r = g. �

4. How often is D = n2 − amg squarefree?

In light of Lemma 1 we would like to construct a lower bound on the
number of squarefree expressions D = n2 − amg as n and m vary such that
deg(n) = j and deg(m) = k and deg(mg) > deg(n2). Regarding k as the
independent parameter we will maximize the number of possible values of
D by choosing j to be the optimally large value j = bgk/2c if gk is odd or
j = bgk/2c − 1 if gk is even. Let s(h) be 1 or 0 according as h is squarefree
or not. Also let

sz(h) =

{
1 if d2 does not divide h whenever 1 ≤ deg(d) ≤ z

0 otherwise.

We would like estimate the sum∑
deg(m)=k
deg(n)=j

s(n2 − amg).

Lemma 2. By counting expressions n2 − amg that are squarefree in the
small factors we obtain the following sieving inequality:∑

m,n

sz(n2 − amg) ≥
∑
m,n

s(n2 − amg) ≥
∑
m,n

sz(n2 − amg)−
∑

m,n,p
deg(p)>z

n2−amg≡0(p2)

1.
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With an appropriate choice of z (depending on k) we will show that for
large k

#{distinct squarefree values of n2 − amg}

∼
∑
m,n

s(n2 − amg) ∼
∑
m,n

sz(n2 − amg)

� qj+k.

Several auxiliary functions will be useful for estimating the terms in
Lemma 2. Define the Möbius µ function on the nonzero elements of R. If
h ∈ R has factorization apα1

1 · · · pαt
t where a ∈ Fq and the pi are irreducible

monic polynomials in R then

µ(h) =


1 if h ∈ F×q ,

(−1)t if αi = 1 for all i,

0 otherwise.

For z ≥ 1 let
P (z) =

∏
irreducible p

deg(p)≤z

p

and let
Nm,z(j) =

∑
deg(n)=j

sz(n2 − amg).

For fixed m,h ∈ R let

ρm(h) = #{n ∈ R/hR : n2 − amg ≡ 0(h)}.

Thus ρm(h) is the number of n ∈ R/hR satisfying the congruence n2−amg ≡
0 (mod h).

We will use the following elementary estimate several times:
Lemma 3. If π(u) represents the number of irreducible polynomials in Fq[T ]
of degree u > 0, then π(u) ≤ qu/u.

Proof. Since qu =
∑

d|u d π(d), the upper bound is clear. �

Lemma 4.
(1) ρm(d1d2) = ρm(d1)ρm(d2) if d1 and d1 are coprime.
(2) ρm(p2) = qdeg(p) if p is irreducible and p divides m.
(3) ρm(p2) ≤ 2 if p is irreducible and p does not divide m.
(4) ρm(d2) ≤ 2ν(d)qdeg(m) for squarefree d where ν(d) is the number of

distinct monic irreducible polynomials of degree ≥ 1 that divide d.

Proof. The multiplicativity of ρm is an immediate consequence of the Chi-
nese remainder theorem.

Suppose that n satisfies n2 − amg ≡ 0(p2) with p dividing m. Then p

divides n. There are exactly qdeg(p) multiples of p modulo p2.
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Suppose that n satisfies n2 − amg ≡ 0(p2) but that p does not divide m.
The solution n must be a ‘lift’ of a solution modulo p. That is n = n1 + pt
where n2

1 − amg ≡ 0(p). We know there are at most two solutions of the
congruence modulo p. Then

0 ≡ (n1 + pt)2 − amg ≡ (n2
1 − amg) + 2n1pt (mod p2)

implies

0 ≡ n2
1 − amg

p
+ 2n1t (mod p).

When p does not divide n and (2, q) = 1 there is a unique t (mod p) satisfy-
ing the last congruence. Thus the solution n1 (mod p) gives rise to a unique
solution n (mod p2). Therefore, in this case, ρn(p) ≤ 2.

Now let ν(d) represent the number of distinct nonconstant monic poly-
nomials dividing d where d is squarefree. Then

ρm(d) =
∏
p|d
p|m

ρm(p2)
∏
p|d

(p,m)=1

ρm(p2) ≤
∏
p|d
p|m

qdeg(p)
∏
p|d

(p,m)=1

2 ≤ 2ν(d)qdeg(m).

�

The following lemma tells us a choice of z that allows the sieve in Lemma
2 to yield interesting information.

Lemma 5. Given any ε > 0 we can choose κ (independently of m) so that
if z = κ log(k) then

Nm,z(j) = qj
∏

deg(p)≤z

(1− ρm(p2)q− deg(p2)) + O(q(1+ε)k).

Proof. Let Nm,z(j) =
∑

deg(n)=j sz(n2 − amg). Then

Nm,z(j) =
∑

deg(n)=j

∑
d monic

d2|(n2−amg ,P (z))

µ(d) =
∑

d
d2|P (z)

µ(d)
∑

deg(n)=j
n2−amg≡0(d2)

1.

If j ≥ deg(d2) then ∑
deg(n)=j

n2−amg≡0(d2)

1 = ρm(d2)qj−deg(d2),

while if j ≤ deg(d2) then ∑
deg(n)=j

n2−amg≡0(d2)

1 ≤ ρm(d2).
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Thus

Nm,z(j) =
∑

d|P (z)

µ(d){ρm(d2)qj−deg(d2) + O(ρm(d2))}

= qj
∏

deg(p)≤z

(1− ρm(p2)q− deg(p2)) +
∑

d|P (z)

O(ρm(d2)).

Now ∑
d|P (z)

ρn(d2) ≤ qdeg(m)
∑

d|P (z)

2ν(d)

= qdeg(m)
∏

deg(p)≤z

(1 + 2)

≤ qdeg(m)3qz
.

Given any ε > 0 we can choose κ such that if z = κ log(k) then the last
expression is bounded by qεk for sufficiently large k. Therefore for sufficiently
large k we have

Nm,z(j) = qj
∏

deg(p)≤z

(1− ρm(p2)q− deg(p2)) + O(q(1+ε)k).

�

Lemma 6. We have the lower bound∑
m,n

sz(n2 − amg) =
∑
m

Nm,z(j) � qj+k.

Proof. We notice that∏
deg(p)≤z

(1− ρm(p2)q− deg(p2)) =
∏
p|m

deg(p)≤z

(1− q− deg(p))
∏

(p,m)=1
deg(p)≤z

(1− ρm(p2)q− deg(p2))

≥
∏
p|m

deg(p)≤z

(1− q− deg(p))
∏
all p

(1− 2q− deg(p2))

�
∏
p|m

(1− q− deg(p)) =
∑
d|m

µ(d)q− deg(d).

Then we sum over m∑
deg(m)=k

∏
deg(p)≤z

(1− ρm(p2)q− deg(p2))

�
∑

deg(m)=k

∑
d|m

µ(d)q− deg(d) =
∑

deg(d)≤k

µ(d)q− deg(d) · qk−deg(d)

= qk
∑

deg(d)≤k

µ(d)q−2 deg(d) = qk{(1− q−1) + O(q−k)} � qk.
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Summing the expression in Lemma 5 as m varies such that deg(m) = k and
applying the last inequality gives the lemma:

∑
m Nm,z(j) � qj+k. �

Lemma 7.
∑

m ν(m) � log(k)qk

Proof. ∑
m

ν(m) ≤
∑

p
deg(p)≤k

qk−deg(p) ≤ qk
∑
u≤k

q−u · qu

u
� log(k)qk.

�

Lemma 8. ∑
m,n,p

deg(p)>z
n2−amg≡0(p2)

1 = o(qi+j).

Proof. We may write ∑
m,n,p

deg(p)>z
n2−amg≡0(p2)

1 =
∑
m

∑
p

deg(p)>z

Mm,p(j)

where

Mm,p(j) =
∑

n
n2−amg≡0(p2)

1.

Because Mm,p(j) = ρm(p2)qj−deg(p2) if j ≥ deg(p2) and Mm,p(j) ≤ ρm(p2) if
j < deg(p2) we obtain an upper bound on Mm,p(j)

Mm,p(j) ≤

{
2(qj−deg(p2) + 1) if (p, m) = 1,
qj−deg(p) if p|m.

Summing over irreducible p results in∑
z<deg(p)≤j

Mm,p(j) ≤
∑

z<deg(p)≤j
(p,m)=1

2(qj−deg(p2) + 1) +
∑

z<deg(p)≤j
p|m

qj−deg(p)

� qj−z

z
+

qj

j
+ ν(m)qj−z.
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Then summing the last expression over m gives∑
m

∑
p

Mm,p(j) �
qj+k−z

z
+

qj+k

j
+ qj−z

∑
m

ν(m)

� qj+k−z

z
+

qj+k

j
+ log(k)qj+k−z

� qj+k(
1

zqz
+

1
j

+
log(k)

qz
)

= o(qj+k).

�

We have now shown (Lemmas 2, 6, and 8) that the number of squarefree
values of n2 − amg as m and n vary is∑

m,n

s(n2 − amg) � qj+k.

It remains to be shown that there is not too much duplication among the
expressions n2 − amg.
Lemma 9. The number of squarefree elements of the form n2 − amg with
deg(n) = j and deg(m) = k that are representable in more than one way is
o(qj+k).

Proof. Let S be the collection of pairs (m,n) of monic polynomials m and
n with deg(n) = j and deg(m) = k such that n2 − amg is representable
in more than one way. We will determine an upper bound for |S| thereby
proving the lemma. Let m1 and m2 be fixed unequal polynomials such that

n2
1 − amg

1 = n2
2 − amg

2

for some n1 and n2. Then

a(mg
1 −mg

2) = n2
1 − n2

2 = (n1 − n2)(n1 + n2)

which shows that the choices for n1 and n2 are determined by the divisors
of a(mg

1 −mg
2). Since deg(mg

1 −mg
2) < gk, the worst possible case is when

a(mg
1−mg

2) is divisible by gk− 1 distinct monic linear factors. In this worst
case the number of (not necessarily monic) divisors is

(q − 1)
gk−1∑
ν=0

(
gk − 1

ν

)
= (q − 1)2gk−1.

Notice that q is fixed but that we vary k. So, this is a very crude upper
bound on the number of divisors when k is large relative to q.

There are qk choices for m1. Given m1, the number of choices for n1 is
bounded by the number of choices for m2 times the number of divisors of
mg

1 − mg
2. Thus the set S contains O(q2k2gk) pairs. Since j = bgk/2c or

bgk/2c − 1 and q ≥ 5, we obtain |S| = O(q2k2gk) = o(qj+k). �
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We have now shown that there are� qj+k distinct values of D = n2−amg.
Since j = bgk/2c or j = bgk/2c − 1 there are � q

gk( 1
2
+ 1

g
) distinct values of

D. Therefore there are � q
`( 1

2
+ 1

g
) quadratic extensions Fq(T,

√
D) of Fq(T )

such that deg(D) ≤ `.
This completes the proof of the theorem stated at the beginning.
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