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Abstract

Let φ and f be functions in the Laguerre–Pólya class. Writeφ(z) = e−αz2
φ1(z) and f (z) =

e−βz2
f1(z), whereφ1 andf1 have genus 0 or 1 andα,β � 0. If αβ < 1/4 andφ has infinitely many

zeros, thenφ(D)f (z) has only simple real zeros, whereD denotes differentiation.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we answer a question of Craven and Csordas stated in [1] regard
simplicity of the zeros ofφ(D)f (z), where bothφ andf are in the Laguerre–Pólya cla
andD denotes differentiation. The Laguerre–Pólya class, denotedLP , consists of the en
tire functions having only real zeros with Weierstrass products of the form

czmeαz−βz2 ∏
k

(
1− z

αk

)
ez/αk ,
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wherec,α,β,αk are real,β � 0,αk �= 0,m is a nonnegative integer, and
∑∞

k=1 1/α2
k < ∞.

An entire function belongs toLP if and only if it is the uniform limit on compact sets of
sequence of real polynomials having only real zeros [2, Theorem 3, p. 331].

One of the reasons for studying the Laguerre–Pólya class is its relationship to th
mann zeta function. Let

ξ(s) = 1

2
s(s − 1)π−s/2Γ (s/2)ζ(s),

whereζ(s) is the Riemann zeta function. Thenξ(1/2 + iz) is an even entire function o
genus 1 that is real for realz. The Riemann hypothesis, which predicts that the zero
ξ(s) have real part 1/2, can be stated asξ(1/2+ iz) ∈LP . Furthermore, evidence sugge
that most, if not all, of the zeros ofξ(s) are simple. Hence, functions inLP with simple
zeros are especially interesting.

For φ(z) = ∑∞
k=0 akz

k ∈ LP andf ∈ LP we consider the differential operatorφ(D)

defined by

φ(D)f (z) =
∞∑

k=0

akf
(k)(z).

With suitable hypothesesφ(D)f (z) ∈LP (see Lemma 2 below). There are several case
which the zeros ofφ(D)f (z) are known to be simple. Craven and Csordas proved thaφ
andf have orders less than 2, ifφ has infinitely many zeros, and if there is a bound on
multiplicity of the zeros off , thenφ(D)f (z) has only simple real zeros [1, Theorem 4.
They also showed that ifφ andf have orders less than 2, ifφ has infinitely many zeros
and if the canonical product representation ofφ has genus zero, thenφ(D)f (z) has only
simple real zeros [1, Theorem 4.7]. In the same paper they state the open prob
whetherφ(D)f (z) has simple zeros without the extra hypothesis bounding the ord
zeros off or the hypothesis thatφ has genus zero [1, p. 819].

In this paper we answer that question in the affirmative with the following theorem

Theorem 1. Let φ and f be in LP . Write φ(z) = e−αz2
φ1(z) and f (z) = e−βz2

f1(z),
whereφ1 andf1 have genus0 or 1 andα,β � 0. If αβ < 1/4 andφ has infinitely many
zeros, thenφ(D)f (z) has only simple real zeros.

This theorem is proved in Section 3.
We remark that the hypothesisαβ < 1/4 in Theorem 1 is necessary. The term 1/4 arises

in proving the convergence of the series definingφ(D)f (z) as in Lemma 3.1 in [1, p. 806
or Theorem 8 in [2, p. 360]. On the other hand, if the Weierstrass product forφ contains
the genus two factore−αz2

and if f has order less than two, the assumption thatφ has
infinitely many zeros is not necessary. Theorem 3.10 in [1] states that ifα > 0 and if g
is a function inLP of order less than 2, then the zeros ofe−αD2

g(z) are simple and rea
Consequently, ifφ(z) = e−αz2

φ1(z), whereα > 0 andφ1(z) has genus less than two, th
φ(D)f (z) = e−αD2

(φ1(D)f (z)) has only simple zeros even ifφ1(z) has finitely many
zeros. Ifφ lacks the genus two factore−αz2

and has finitely many zeros, the conclusion
the theorem does not hold.
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2. Preliminaries

Forφ(z) = ∑∞
k=0 akz

k ∈ LP andf ∈ LP it is important to know when the expressio

φ(D)f (z) =
∞∑

k=0

akf
(k)(z)

makes sense. For our purposes, the following well-known result will suffice.

Lemma 2. Write φ(z) = e−αz2
φ1(z) andf (z) = e−βz2

f1(z), whereφ1(z) andf1(z) have
genus0 or 1 andα,β � 0. If αβ < 1/4, thenφ(D)f (z) ∈LP .

Proof. See Levin [2, Theorem. 8, p. 360].�
Lemma 2 shows that under the assumptions of Theorem 1 the expressionφ(D)f (z)

represents a function in the Laguerre–Pólya class. Thus,φ(D)f (z) has only real zeros
A natural question to ask is whether the zerosare also simple. As the convergence of
sum definingφ(D)f (z) is not in question, the proof of Theorem 1 in the following sect
focuses solely on the question of simplicity.

3. Proof of Theorem 1

In this section we will prove Theorem 1. The proof builds upon results from the p
of Craven and Csordas [1] and upon well-known facts about entire function as in Lev

The basic outline of the proof of Theorem 1is as follows: We begin by studying th
effect of individual factors in the Weierstrass product forφ(D) on f (z). Thus, in Lem-
mas 3–5, we consider the expressionh = f −α−1f ′. We show that ifh has a zero of orde
m � 2 atx0, thenf has a zero of order at leastm + 1 atx0. This fact will be used to prov
Lemma 6 which says that in a fixed interval the expression

∏n
k=1(1−D/αk)f (z) has only

simple zeros for sufficiently largen. This result is extended in Lemmas 7–10 to show th
φ(z) = ∏∞

k=1(1− z/αk) is of genus 0, thenφ(D)f (z) has only simple real zeros. Finall
in Lemma 11 the result is extended to the more general case, stated in the hypoth
Theorem 1, to show thatφ(D)f (z) has only simple real zeros. This proves Theorem 1.
will now proceed with the proof.

Lemma 3. Letf ∈ LP and letα �= 0 be real. Then

(1) f ′ ∈LP , and
(2) h = (I − α−1D)f = f − α−1f ′ ∈LP .

Proof. Although this is a special case of Lemma 2, we recall the elementary argu
Sincef is the uniform limit of a sequence of real polynomials{fn} having only real zeros
f ′ is the uniform limit of the sequence{f ′

n}. Because eachfn has only real zeros, eachf ′
n

also has only real zeros. Hence, the zeros off ′ are also real, andf ′ ∈ LP . Then
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h(z) = −α−1eαzD
(
e−αzf (z)

)
.

So,h is also inLP . �
Lemma 4 (Laguerre inequalities). Letf ∈LP . Then(

f (n)(z)
)2 − f (n−1)(z)f (n+1)(z) � 0, −∞ < z < ∞, n � 1.

Equality holds if and only iff (n−1)(z) is of the formceαz or if z is a multiple root of
f (n−1)(z).

Proof. We follow the explanation in [3, p. 69]. Iff (z) is of the formf (z) = ceαz, then
[f ′(z)]2 − f (z)f ′′(z) = 0 for all z. Otherwise, we expressf (z) as a Weierstrass produc

f (z) = czmeαz−βz2 ∏
k

(1− z/αk)e
z/αk .

The logarithmic derivative off (z) is

f ′(z)
f (z)

= m

z
+ α − 2βz +

∞∑
k=0

(
1

z − αk

+ 1

αk

)
.

Hence,

d

dz

(
f ′(z)
f (z)

)
= f ′′(z)f (z) − (f ′(z))2

(f (z))2 = − m

z2 − 2β −
∞∑

k=1

1

(z − αk)2 < 0.

This shows that iff (z) is not of the formceαz and if z is real but not a root off , then(
f ′(z)

)2 − f (z)f ′′(z) > 0. (1)

By continuity(
f ′(z)

)2 − f (z)f ′′(z) � 0 (2)

for all real z with equality if and only iff (z) is of the formceαz or z is a multiple root
of f . Since the derivative of a function inLP is also inLP , inequalities (1) and (2) appl
to the derivatives off . �
Lemma 5 [1, Lemma 4.2]. Let f ∈ LP and leth(z) = f (z) − α−1f ′(z), whereα �= 0 is
real. If h(z) has a zero of orderm � 2 at x0, thenf (z) has a zero of order at leastm + 1
at x0. Consequently, if the zeros off are simple, then the zeros ofh are also simple.

Proof. Sinceh(z) has a zero of orderm at x0,

0 = h(k)(x0) = f (k)(x0) − α−1f (k+1)(x0)

for 0 � k � m − 1. This implies that

f (k)(x0) = αkf (x0)

for 0 � k � m. Then for 1� k � m − 1,
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f (k)(x0)

)2 − f (k−1)(x0)f
(k+1)(x0)

= (
αkf (x0)

)2 − (
αk−1f (x0)

)(
αk+1f (x0)

) = 0.

Sincef,f ′, . . . , f (m−1) are not exponential functions (otherwiseh could not have a zer
of orderm), the Laguerre inequalities (Lemma 4) imply that

f (k)(x0) = 0

for 0 � k � m. In other words,f has a zero of order at leastm + 1 atx0. �
Lemma 6. Let φn(z) = ∏n

k=1(1 − z/αk), whereα1, α2, α3, . . . are real and nonzero, an
let f ∈ LP . GivenA > 0 there existsN such that ifn � N , thenφn(D)f (z) has only
simple zeros in the interval(−A,A).

Proof. Assume, to the contrary, that for someA > 0 there is a sequence 0< n1 < n2 <

n3 < · · · such thatφnj (D)f (z) has a zeroxj of multiplicity at least two in the interva
(−A,A). By Lemma 5,xj is a zero off (z) of order at leastnj + 2. Since the sequenc
nj +2 is unbounded,f (z) has zeros of arbitrarily large order in the finite interval(−A,A).
This is impossible sincef (z) is entire. �

We will extend the previous lemma to show that ifφ ∈LP and ifφ has genus zero, the
φ(D)f (z) has simple zeros. This is shown in Lemma 10. Lemmas 7–9 provide se
technical results needed for the proof of Lemma 10.

Lemma 7. Assumef ∈LP is of the form

f (z) = czmeαz−σz2
∞∏

k=1

(
1− z

βk

)
ez/βk

and assumeε > 0. Then

∣∣f (n)(z)
∣∣ � n!Aε

(
2e(σ + ε)

n

)n/2

for |z| � R =
√

n
2(σ+ε)

, whereAε is a constant depending onε.

Proof. As explained in [2, p. 13], the product

zmeαz

∞∏
k=1

(
1− z

βk

)
ez/βk

(which lacks the terme−σz2
) is of order at most 2 and of minimal type. Thusf (z) is of

order 2 and normal typeσ . Therefore, givenε > 0 there existsAε such that

Mf (R) = max
|z|�R

∣∣f (z)
∣∣ < Aε exp

(
(σ + ε)R2)

for all R. By Cauchy’s inequality, for|z| � R,

∣∣f (n)(z)
∣∣ � n!Mf (R) � n!Aε exp((σ + ε)R2)

.

Rn Rn
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The last expression is minimized whenR =
√

n
2(σ+ε)

. �
Lemma 8. For eachn let

ψn(z) =
∞∏

k=n+1

(
1− z

αk

)
,

where
∑∞

k=1 |αk|−1 < ∞. Then

∣∣ψ(k)
n (0)

∣∣ � k!
(

eBn

k

)k

,

whereBn = ∑∞
j=n+1 |αj |−1.

Proof. LetM(R,ψn) = max|z|�R |ψn(z)|. Taking the logarithm of the Weierstrass prod
for ψn gives

logM(R,ψn) �
∞∑

k=n+1

log
(
1+ |R/αk|

)
�

∞∑
k=n+1

|R/αk| = BnR.

By Cauchy’s inequality we obtain, for|z| � R,

∣∣ψ(k)
n (z)

∣∣ � k!M(R,ψn)

Rk
� k!exp(BnR)

Rk
.

The last expression is minimized ifR = k/Bn. �
Lemma 9. Letψn be as in the previous lemma and letf ∈ LP . Thenψn(D)f (z) converges
to f (z) uniformly on compact sets.

Proof. Let K be any compact subset ofC and let|z| < R for all z ∈ K. Then

ψn(D)f (z) =
∞∑

k=0

ψ
(k)
n (0)

k! f (k)(z).

Now let ε > 0 as in Lemma 7. Then∣∣ψn(D)f (z) − f (z)
∣∣

�
∑

1�k�2(σ+ε)R2

|ψ(k)
n (0)|
k!

∣∣f (k)(z)
∣∣ +

∑
k>2(σ+ε)R2

|ψ(k)
n (0)|
k!

∣∣f (k)(z)
∣∣.

The reason for splitting the sum is that whenk > 2(σ + ε)R2 the bound from Lemma 7
applies. Applying the bounds in Lemmas 7 and 8 gives∣∣ψn(D)f (z) − f (z)

∣∣
�

∑
2

(
eBn

k

)k k!M(R,f )

Rk
+

∑
2

(
eBn

k

)k

k!Aε

(
2e(σ + ε)

k

)k/2

.

1�k�2(σ+ε)R k>2(σ+ε)R
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The second summation converges by the root test from elementary calculus. SinceBn → 0
asn → ∞, the right-hand side of the inequality can be made arbitrarily small when|z| < R

by takingn sufficiently large. This proves the uniform convergence.�
Lemma 10. Let φ(z) = ∏∞

k=1(1 − z/αk) ∈ LP and letf be any function inLP . Then
φ(D)f (z) has only simple real zeros.

Proof. Let A be any positive number. We will show thatφ(D)f (z) has only simple zero
in the interval(−A,A). We factorφ(z) as

φ(z) = φn(z)θn,m(z)ψm(z),

where 1� n < m and where

φn(z) =
n∏

k=1

(
1− z

αk

)
, θn,m(z) =

m∏
k=n+1

(
1− z

αk

)
,

ψm(z) =
∞∏

k=m+1

(
1− z

αk

)
.

Recalling that products inLP correspond to composition of differential operators we h

φ(D)f (z) = φn(D)
[
θn,m(D)

(
ψm(D)f (z)

)]
.

As the composition of these differential operators is commutative, the termsφn(D),
θn,m(D), andψm(D) can be written in any order. According to Lemma 6, there is
N such thatφN(D)f (z) has only simple zeros in the interval(−A,A). According to
Lemma 9,ψm(D)(φN (D)f (z)) converges uniformly on compact sets toφN(D)f (z).
By Hurwitz’s theorem the simple zeros ofφN(D)f (z) are limit points of the zeros o
ψm(D)(φN(D)f (z)). Thus, there exists anM > N such thatψM(D)(φN(D)f (z)) has
only simple zeros in the interval(−A,A). Then by Lemma 5,

θN,M(D)
[
ψM(D)

(
φN(D)f (z)

)] = φ(D)f (z)

has only simple zeros in the interval(−A,A). SinceA is arbitrary this proves the lemma�
Lemma 11. Let φ and f be in LP . Write φ(z) = e−αz2

φ1(z) and f (z) = e−βz2
f1(z),

whereφ1 andf1 have genus0 or 1 andα,β � 0. If αβ < 1/4 andφ has infinitely many
zeros, thenφ(D)f (z) has only simple real zeros.

Proof. Sinceφ has infinitely many zeros, there is a subsequence{αk} of zeros ofφ such
that

∑∞
k=1 |αk|−1 < ∞. Write φ as

φ(z) = φ0(z)φ2(z),

whereφ0(z) = ∏∞
k=1(1 − z/αk). Note thatφ0 has genus 0 andφ2 has genus� 2. By

Lemma 2,φ2(D)f (z) is in LP . Then by Lemma 10,
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ns,

80.
φ(D)f (z) = φ0(D)
[
φ2(D)f (z)

]
is in LP and has only simple zeros.�

This completes the proof of Theorem 1.
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