Differential operators and entire functions with simple real zeros

D.A. Cardon*, S.A. de Gaston
Department of Mathematics, Brigham Young University, Provo, UT 84602, USA
Received 28 February 2004
Available online 11 September 2004
Submitted by B.C. Berndt

Abstract

Let ϕ and f be functions in the Laguerre-Pólya class. Write $\phi(z)=e^{-\alpha z^{2}} \phi_{1}(z)$ and $f(z)=$ $e^{-\beta z^{2}} f_{1}(z)$, where ϕ_{1} and f_{1} have genus 0 or 1 and $\alpha, \beta \geqslant 0$. If $\alpha \beta<1 / 4$ and ϕ has infinitely many zeros, then $\phi(D) f(z)$ has only simple real zeros, where D denotes differentiation. © 2004 Elsevier Inc. All rights reserved.

Keywords: Differential operators; Zeros of entire functions; Laguerre-Pólya class; Simple zeros

1. Introduction

In this paper we answer a question of Craven and Csordas stated in [1] regarding the simplicity of the zeros of $\phi(D) f(z)$, where both ϕ and f are in the Laguerre-Pólya class and D denotes differentiation. The Laguerre-Pólya class, denoted $\mathcal{L P}$, consists of the entire functions having only real zeros with Weierstrass products of the form

$$
c z^{m} e^{\alpha z-\beta z^{2}} \prod_{k}\left(1-\frac{z}{\alpha_{k}}\right) e^{z / \alpha_{k}},
$$

[^0]0022-247X/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.07.032
where $c, \alpha, \beta, \alpha_{k}$ are real, $\beta \geqslant 0, \alpha_{k} \neq 0, m$ is a nonnegative integer, and $\sum_{k=1}^{\infty} 1 / \alpha_{k}^{2}<\infty$. An entire function belongs to $\mathcal{L P}$ if and only if it is the uniform limit on compact sets of a sequence of real polynomials having only real zeros [2, Theorem 3, p. 331].

One of the reasons for studying the Laguerre-Pólya class is its relationship to the Riemann zeta function. Let

$$
\xi(s)=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma(s / 2) \zeta(s)
$$

where $\zeta(s)$ is the Riemann zeta function. Then $\xi(1 / 2+i z)$ is an even entire function of genus 1 that is real for real z. The Riemann hypothesis, which predicts that the zeros of $\xi(s)$ have real part $1 / 2$, can be stated as $\xi(1 / 2+i z) \in \mathcal{L P}$. Furthermore, evidence suggests that most, if not all, of the zeros of $\xi(s)$ are simple. Hence, functions in $\mathcal{L P}$ with simple zeros are especially interesting.

For $\phi(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \in \mathcal{L P}$ and $f \in \mathcal{L P}$ we consider the differential operator $\phi(D)$ defined by

$$
\phi(D) f(z)=\sum_{k=0}^{\infty} a_{k} f^{(k)}(z)
$$

With suitable hypotheses $\phi(D) f(z) \in \mathcal{L P}$ (see Lemma 2 below). There are several cases in which the zeros of $\phi(D) f(z)$ are known to be simple. Craven and Csordas proved that if ϕ and f have orders less than 2 , if ϕ has infinitely many zeros, and if there is a bound on the multiplicity of the zeros of f, then $\phi(D) f(z)$ has only simple real zeros [1, Theorem 4.6]. They also showed that if ϕ and f have orders less than 2 , if ϕ has infinitely many zeros, and if the canonical product representation of ϕ has genus zero, then $\phi(D) f(z)$ has only simple real zeros [1, Theorem 4.7]. In the same paper they state the open problem of whether $\phi(D) f(z)$ has simple zeros without the extra hypothesis bounding the order of zeros of f or the hypothesis that ϕ has genus zero [1, p. 819].

In this paper we answer that question in the affirmative with the following theorem.
Theorem 1. Let ϕ and f be in $\mathcal{L P}$. Write $\phi(z)=e^{-\alpha z^{2}} \phi_{1}(z)$ and $f(z)=e^{-\beta z^{2}} f_{1}(z)$, where ϕ_{1} and f_{1} have genus 0 or 1 and $\alpha, \beta \geqslant 0$. If $\alpha \beta<1 / 4$ and ϕ has infinitely many zeros, then $\phi(D) f(z)$ has only simple real zeros.

This theorem is proved in Section 3.
We remark that the hypothesis $\alpha \beta<1 / 4$ in Theorem 1 is necessary. The term $1 / 4$ arises in proving the convergence of the series defining $\phi(D) f(z)$ as in Lemma 3.1 in [1, p. 806] or Theorem 8 in [2, p. 360]. On the other hand, if the Weierstrass product for ϕ contains the genus two factor $e^{-\alpha z^{2}}$ and if f has order less than two, the assumption that ϕ has infinitely many zeros is not necessary. Theorem 3.10 in [1] states that if $\alpha>0$ and if g is a function in $\mathcal{L P}$ of order less than 2 , then the zeros of $e^{-\alpha D^{2}} g(z)$ are simple and real. Consequently, if $\phi(z)=e^{-\alpha z^{2}} \phi_{1}(z)$, where $\alpha>0$ and $\phi_{1}(z)$ has genus less than two, then $\phi(D) f(z)=e^{-\alpha D^{2}}\left(\phi_{1}(D) f(z)\right)$ has only simple zeros even if $\phi_{1}(z)$ has finitely many zeros. If ϕ lacks the genus two factor $e^{-\alpha z^{2}}$ and has finitely many zeros, the conclusion of the theorem does not hold.

2. Preliminaries

For $\phi(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \in \mathcal{L P}$ and $f \in \mathcal{L P}$ it is important to know when the expression

$$
\phi(D) f(z)=\sum_{k=0}^{\infty} a_{k} f^{(k)}(z)
$$

makes sense. For our purposes, the following well-known result will suffice.
Lemma 2. Write $\phi(z)=e^{-\alpha z^{2}} \phi_{1}(z)$ and $f(z)=e^{-\beta z^{2}} f_{1}(z)$, where $\phi_{1}(z)$ and $f_{1}(z)$ have genus 0 or 1 and $\alpha, \beta \geqslant 0$. If $\alpha \beta<1 / 4$, then $\phi(D) f(z) \in \mathcal{L P}$.

Proof. See Levin [2, Theorem. 8, p. 360].
Lemma 2 shows that under the assumptions of Theorem 1 the expression $\phi(D) f(z)$ represents a function in the Laguerre-Pólya class. Thus, $\phi(D) f(z)$ has only real zeros. A natural question to ask is whether the zeros are also simple. As the convergence of the sum defining $\phi(D) f(z)$ is not in question, the proof of Theorem 1 in the following section focuses solely on the question of simplicity.

3. Proof of Theorem 1

In this section we will prove Theorem 1. The proof builds upon results from the paper of Craven and Csordas [1] and upon well-known facts about entire function as in Levin [2].

The basic outline of the proof of Theorem 1 is as follows: We begin by studying the effect of individual factors in the Weierstrass product for $\phi(D)$ on $f(z)$. Thus, in Lemmas 3-5, we consider the expression $h=f-\alpha^{-1} f^{\prime}$. We show that if h has a zero of order $m \geqslant 2$ at x_{0}, then f has a zero of order at least $m+1$ at x_{0}. This fact will be used to prove Lemma 6 which says that in a fixed interval the expression $\prod_{k=1}^{n}\left(1-D / \alpha_{k}\right) f(z)$ has only simple zeros for sufficiently large n. This result is extended in Lemmas 7-10 to show that if $\phi(z)=\prod_{k=1}^{\infty}\left(1-z / \alpha_{k}\right)$ is of genus 0 , then $\phi(D) f(z)$ has only simple real zeros. Finally, in Lemma 11 the result is extended to the more general case, stated in the hypotheses of Theorem 1, to show that $\phi(D) f(z)$ has only simple real zeros. This proves Theorem 1. We will now proceed with the proof.

Lemma 3. Let $f \in \mathcal{L P}$ and let $\alpha \neq 0$ be real. Then
(1) $f^{\prime} \in \mathcal{L P}$, and
(2) $h=\left(I-\alpha^{-1} D\right) f=f-\alpha^{-1} f^{\prime} \in \mathcal{L P}$.

Proof. Although this is a special case of Lemma 2, we recall the elementary argument. Since f is the uniform limit of a sequence of real polynomials $\left\{f_{n}\right\}$ having only real zeros, f^{\prime} is the uniform limit of the sequence $\left\{f_{n}^{\prime}\right\}$. Because each f_{n} has only real zeros, each f_{n}^{\prime} also has only real zeros. Hence, the zeros of f^{\prime} are also real, and $f^{\prime} \in \mathcal{L P}$. Then

$$
h(z)=-\alpha^{-1} e^{\alpha z} D\left(e^{-\alpha z} f(z)\right)
$$

So, h is also in $\mathcal{L P}$.
Lemma 4 (Laguerre inequalities). Let $f \in \mathcal{L P}$. Then

$$
\left(f^{(n)}(z)\right)^{2}-f^{(n-1)}(z) f^{(n+1)}(z) \geqslant 0, \quad-\infty<z<\infty, n \geqslant 1 .
$$

Equality holds if and only if $f^{(n-1)}(z)$ is of the form $c e^{\alpha z}$ or if z is a multiple root of $f^{(n-1)}(z)$.

Proof. We follow the explanation in [3, p. 69]. If $f(z)$ is of the form $f(z)=c e^{\alpha z}$, then $\left[f^{\prime}(z)\right]^{2}-f(z) f^{\prime \prime}(z)=0$ for all z. Otherwise, we express $f(z)$ as a Weierstrass product

$$
f(z)=c z^{m} e^{\alpha z-\beta z^{2}} \prod_{k}\left(1-z / \alpha_{k}\right) e^{z / \alpha_{k}}
$$

The logarithmic derivative of $f(z)$ is

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m}{z}+\alpha-2 \beta z+\sum_{k=0}^{\infty}\left(\frac{1}{z-\alpha_{k}}+\frac{1}{\alpha_{k}}\right) .
$$

Hence,

$$
\frac{d}{d z}\left(\frac{f^{\prime}(z)}{f(z)}\right)=\frac{f^{\prime \prime}(z) f(z)-\left(f^{\prime}(z)\right)^{2}}{(f(z))^{2}}=-\frac{m}{z^{2}}-2 \beta-\sum_{k=1}^{\infty} \frac{1}{\left(z-\alpha_{k}\right)^{2}}<0
$$

This shows that if $f(z)$ is not of the form $c e^{\alpha z}$ and if z is real but not a root of f, then

$$
\begin{equation*}
\left(f^{\prime}(z)\right)^{2}-f(z) f^{\prime \prime}(z)>0 \tag{1}
\end{equation*}
$$

By continuity

$$
\begin{equation*}
\left(f^{\prime}(z)\right)^{2}-f(z) f^{\prime \prime}(z) \geqslant 0 \tag{2}
\end{equation*}
$$

for all real z with equality if and only if $f(z)$ is of the form $c e^{\alpha z}$ or z is a multiple root of f. Since the derivative of a function in $\mathcal{L P}$ is also in $\mathcal{L P}$, inequalities (1) and (2) apply to the derivatives of f.

Lemma 5 [1, Lemma 4.2]. Let $f \in \mathcal{L P}$ and let $h(z)=f(z)-\alpha^{-1} f^{\prime}(z)$, where $\alpha \neq 0$ is real. If $h(z)$ has a zero of order $m \geqslant 2$ at x_{0}, then $f(z)$ has a zero of order at least $m+1$ at x_{0}. Consequently, if the zeros of f are simple, then the zeros of h are also simple.

Proof. Since $h(z)$ has a zero of order m at x_{0},

$$
0=h^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right)-\alpha^{-1} f^{(k+1)}\left(x_{0}\right)
$$

for $0 \leqslant k \leqslant m-1$. This implies that

$$
f^{(k)}\left(x_{0}\right)=\alpha^{k} f\left(x_{0}\right)
$$

for $0 \leqslant k \leqslant m$. Then for $1 \leqslant k \leqslant m-1$,

$$
\begin{aligned}
& \left(f^{(k)}\left(x_{0}\right)\right)^{2}-f^{(k-1)}\left(x_{0}\right) f^{(k+1)}\left(x_{0}\right) \\
& \quad=\left(\alpha^{k} f\left(x_{0}\right)\right)^{2}-\left(\alpha^{k-1} f\left(x_{0}\right)\right)\left(\alpha^{k+1} f\left(x_{0}\right)\right)=0
\end{aligned}
$$

Since $f, f^{\prime}, \ldots, f^{(m-1)}$ are not exponential functions (otherwise h could not have a zero of order m), the Laguerre inequalities (Lemma 4) imply that

$$
f^{(k)}\left(x_{0}\right)=0
$$

for $0 \leqslant k \leqslant m$. In other words, f has a zero of order at least $m+1$ at x_{0}.
Lemma 6. Let $\phi_{n}(z)=\prod_{k=1}^{n}\left(1-z / \alpha_{k}\right)$, where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ are real and nonzero, and let $f \in \mathcal{L P}$. Given $A>0$ there exists N such that if $n \geqslant N$, then $\phi_{n}(D) f(z)$ has only simple zeros in the interval $(-A, A)$.

Proof. Assume, to the contrary, that for some $A>0$ there is a sequence $0<n_{1}<n_{2}<$ $n_{3}<\cdots$ such that $\phi_{n_{j}}(D) f(z)$ has a zero x_{j} of multiplicity at least two in the interval $(-A, A)$. By Lemma $5, x_{j}$ is a zero of $f(z)$ of order at least $n_{j}+2$. Since the sequence $n_{j}+2$ is unbounded, $f(z)$ has zeros of arbitrarily large order in the finite interval $(-A, A)$. This is impossible since $f(z)$ is entire.

We will extend the previous lemma to show that if $\phi \in \mathcal{L P}$ and if ϕ has genus zero, then $\phi(D) f(z)$ has simple zeros. This is shown in Lemma 10. Lemmas 7-9 provide several technical results needed for the proof of Lemma 10.

Lemma 7. Assume $f \in \mathcal{L P}$ is of the form

$$
f(z)=c z^{m} e^{\alpha z-\sigma z^{2}} \prod_{k=1}^{\infty}\left(1-\frac{z}{\beta_{k}}\right) e^{z / \beta_{k}}
$$

and assume $\epsilon>0$. Then

$$
\left|f^{(n)}(z)\right| \leqslant n!A_{\epsilon}\left(\frac{2 e(\sigma+\epsilon)}{n}\right)^{n / 2}
$$

for $|z| \leqslant R=\sqrt{\frac{n}{2(\sigma+\epsilon)}}$, where A_{ϵ} is a constant depending on ϵ.
Proof. As explained in [2, p. 13], the product

$$
z^{m} e^{\alpha z} \prod_{k=1}^{\infty}\left(1-\frac{z}{\beta_{k}}\right) e^{z / \beta_{k}}
$$

(which lacks the term $e^{-\sigma z^{2}}$) is of order at most 2 and of minimal type. Thus $f(z)$ is of order 2 and normal type σ. Therefore, given $\epsilon>0$ there exists A_{ϵ} such that

$$
M_{f}(R)=\max _{|z| \leqslant R}|f(z)|<A_{\epsilon} \exp \left((\sigma+\epsilon) R^{2}\right)
$$

for all R. By Cauchy's inequality, for $|z| \leqslant R$,

$$
\left|f^{(n)}(z)\right| \leqslant \frac{n!M_{f}(R)}{R^{n}} \leqslant \frac{n!A_{\epsilon} \exp \left((\sigma+\epsilon) R^{2}\right)}{R^{n}}
$$

The last expression is minimized when $R=\sqrt{\frac{n}{2(\sigma+\epsilon)}}$.
Lemma 8. For each n let

$$
\psi_{n}(z)=\prod_{k=n+1}^{\infty}\left(1-\frac{z}{\alpha_{k}}\right)
$$

where $\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{-1}<\infty$. Then

$$
\left|\psi_{n}^{(k)}(0)\right| \leqslant k!\left(\frac{e B_{n}}{k}\right)^{k}
$$

where $B_{n}=\sum_{j=n+1}^{\infty}\left|\alpha_{j}\right|^{-1}$.
Proof. Let $M\left(R, \psi_{n}\right)=\max _{|z| \leqslant R}\left|\psi_{n}(z)\right|$. Taking the logarithm of the Weierstrass product for ψ_{n} gives

$$
\log M\left(R, \psi_{n}\right) \leqslant \sum_{k=n+1}^{\infty} \log \left(1+\left|R / \alpha_{k}\right|\right) \leqslant \sum_{k=n+1}^{\infty}\left|R / \alpha_{k}\right|=B_{n} R
$$

By Cauchy's inequality we obtain, for $|z| \leqslant R$,

$$
\left|\psi_{n}^{(k)}(z)\right| \leqslant \frac{k!M\left(R, \psi_{n}\right)}{R^{k}} \leqslant \frac{k!\exp \left(B_{n} R\right)}{R^{k}} .
$$

The last expression is minimized if $R=k / B_{n}$.
Lemma 9. Let ψ_{n} be as in the previous lemma and let $f \in \mathcal{L P}$. Then $\psi_{n}(D) f(z)$ converges to $f(z)$ uniformly on compact sets.

Proof. Let K be any compact subset of \mathbb{C} and let $|z|<R$ for all $z \in K$. Then

$$
\psi_{n}(D) f(z)=\sum_{k=0}^{\infty} \frac{\psi_{n}^{(k)}(0)}{k!} f^{(k)}(z)
$$

Now let $\epsilon>0$ as in Lemma 7. Then

$$
\begin{aligned}
& \left|\psi_{n}(D) f(z)-f(z)\right| \\
& \quad \leqslant \sum_{1 \leqslant k \leqslant 2(\sigma+\epsilon) R^{2}} \frac{\left|\psi_{n}^{(k)}(0)\right|}{k!}\left|f^{(k)}(z)\right|+\sum_{k>2(\sigma+\epsilon) R^{2}} \frac{\left|\psi_{n}^{(k)}(0)\right|}{k!}\left|f^{(k)}(z)\right| .
\end{aligned}
$$

The reason for splitting the sum is that when $k>2(\sigma+\epsilon) R^{2}$ the bound from Lemma 7 applies. Applying the bounds in Lemmas 7 and 8 gives

$$
\begin{aligned}
& \left|\psi_{n}(D) f(z)-f(z)\right| \\
& \quad \leqslant \sum_{1 \leqslant k \leqslant 2(\sigma+\epsilon) R^{2}}\left(\frac{e B_{n}}{k}\right)^{k} \frac{k!M(R, f)}{R^{k}}+\sum_{k>2(\sigma+\epsilon) R^{2}}\left(\frac{e B_{n}}{k}\right)^{k} k!A_{\epsilon}\left(\frac{2 e(\sigma+\epsilon)}{k}\right)^{k / 2} .
\end{aligned}
$$

The second summation converges by the root test from elementary calculus. Since $B_{n} \rightarrow 0$ as $n \rightarrow \infty$, the right-hand side of the inequality can be made arbitrarily small when $|z|<R$ by taking n sufficiently large. This proves the uniform convergence.

Lemma 10. Let $\phi(z)=\prod_{k=1}^{\infty}\left(1-z / \alpha_{k}\right) \in \mathcal{L P}$ and let f be any function in $\mathcal{L P}$. Then $\phi(D) f(z)$ has only simple real zeros.

Proof. Let A be any positive number. We will show that $\phi(D) f(z)$ has only simple zeros in the interval $(-A, A)$. We factor $\phi(z)$ as

$$
\phi(z)=\phi_{n}(z) \theta_{n, m}(z) \psi_{m}(z)
$$

where $1 \leqslant n<m$ and where

$$
\begin{aligned}
& \phi_{n}(z)=\prod_{k=1}^{n}\left(1-\frac{z}{\alpha_{k}}\right), \quad \theta_{n, m}(z)=\prod_{k=n+1}^{m}\left(1-\frac{z}{\alpha_{k}}\right), \\
& \psi_{m}(z)=\prod_{k=m+1}^{\infty}\left(1-\frac{z}{\alpha_{k}}\right) .
\end{aligned}
$$

Recalling that products in $\mathcal{L P}$ correspond to composition of differential operators we have

$$
\phi(D) f(z)=\phi_{n}(D)\left[\theta_{n, m}(D)\left(\psi_{m}(D) f(z)\right)\right] .
$$

As the composition of these differential operators is commutative, the terms $\phi_{n}(D)$, $\theta_{n, m}(D)$, and $\psi_{m}(D)$ can be written in any order. According to Lemma 6, there is an N such that $\phi_{N}(D) f(z)$ has only simple zeros in the interval $(-A, A)$. According to Lemma 9, $\psi_{m}(D)\left(\phi_{N}(D) f(z)\right)$ converges uniformly on compact sets to $\phi_{N}(D) f(z)$. By Hurwitz's theorem the simple zeros of $\phi_{N}(D) f(z)$ are limit points of the zeros of $\psi_{m}(D)\left(\phi_{N}(D) f(z)\right)$. Thus, there exists an $M>N$ such that $\psi_{M}(D)\left(\phi_{N}(D) f(z)\right)$ has only simple zeros in the interval $(-A, A)$. Then by Lemma 5,

$$
\theta_{N, M}(D)\left[\psi_{M}(D)\left(\phi_{N}(D) f(z)\right)\right]=\phi(D) f(z)
$$

has only simple zeros in the interval $(-A, A)$. Since A is arbitrary this proves the lemma.

Lemma 11. Let ϕ and f be in $\mathcal{L P}$. Write $\phi(z)=e^{-\alpha z^{2}} \phi_{1}(z)$ and $f(z)=e^{-\beta z^{2}} f_{1}(z)$, where ϕ_{1} and f_{1} have genus 0 or 1 and $\alpha, \beta \geqslant 0$. If $\alpha \beta<1 / 4$ and ϕ has infinitely many zeros, then $\phi(D) f(z)$ has only simple real zeros.

Proof. Since ϕ has infinitely many zeros, there is a subsequence $\left\{\alpha_{k}\right\}$ of zeros of ϕ such that $\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{-1}<\infty$. Write ϕ as

$$
\phi(z)=\phi_{0}(z) \phi_{2}(z),
$$

where $\phi_{0}(z)=\prod_{k=1}^{\infty}\left(1-z / \alpha_{k}\right)$. Note that ϕ_{0} has genus 0 and ϕ_{2} has genus $\leqslant 2$. By Lemma $2, \phi_{2}(D) f(z)$ is in $\mathcal{L P}$. Then by Lemma 10,

$$
\phi(D) f(z)=\phi_{0}(D)\left[\phi_{2}(D) f(z)\right]
$$

is in $\mathcal{L P}$ and has only simple zeros.
This completes the proof of Theorem 1.

Acknowledgment

We thank Craven and Csordas for stating the interesting open problem [1, p. 819] that led to the writing of this paper.

References

[1] T. Craven, G. Csordas, Differential operators of infinite order and the distribution of zeros of entire functions, J. Math. Anal. Appl. 186 (1994) 799-820.
[2] B.Ja. Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence, RI, 1980.
[3] H. Skovgaard, On inequalities of the Turán type, Math. Scand. 2 (1954) 65-73.

[^0]: * Corresponding author.

 E-mail address: cardon@math.byu.edu (D.A. Cardon).

