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Abstract

Let f : N→ N be a function. Let An = (aij) be the n× n matrix defined by
aij = 1 if i = f(j) for some i and j and aij = 0 otherwise. We describe the
Jordan canonical form of the matrix An in terms of the directed graph for
which An is the adjacency matrix. We discuss several examples including a
connection with the Collatz 3n+ 1 conjecture.
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1. Introduction

Let f : N → N be any function. For each n ∈ N, we define the n × n
matrix An = (aij) by

aij =

{
1 if i = f(j) for some i, j ∈ {1, . . . , n},
0 otherwise.

The matrix An contains partial information about f . We may regard An as
the adjacency matrix for the directed graph Γn with vertices labeled 1, . . . , n
having a directed edge from vertex j to vertex i if and only if i = f(j). The
main purpose of this paper is to describe the Jordan canonical form of An in
terms of the graph Γn. This description is given in Theorem 6.

As a motivating example, let f be the function

f(n) =

{
3n+1

2
if n is odd,

n
2

if n is even.
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The Collatz conjecture states that, for each k ∈ N, the sequence

k, f(k), (f ◦ f)(k), (f ◦ f ◦ f)(k), . . .

contains the number 1. In §5, we will discuss this example in more detail
where we develop an explicit formula for the number of Jordan blocks for the
eigenvalue 0 in the Jordan decomposition of the matrix An.

The use of combinatorial and graph theoretic methods for understanding
the Jordan canonical form has a long history. In 1837, Jacobi showed that
an n×n matrix is similar to an upper triangular matrix. Many proofs of the
Jordan form rely on this result. Brualdi’s 1987 expository article [2] explains
a graph theoretic interpretation of Turnbull and Aitken’s 1932 combinatorial
proof of Jacobi’s Theorem (see Chap. 6 §4 of [9]). A recent and very accessible
treatment of the interplay among matrices, combinatorics, and graphs is
given in [3] by Brualdi and Cvetković.

The remainder of this paper is organized as follows: In §2, we describe
how to partition the directed graph Γn into chains and cycles. These chains
and cycles are related to the Jordan form of An. In §3, we state and prove
our main theorem, Theorem 6, which describes the Jordan block structure
of An in terms of the cycles and chains of the graph Γn. In §5, we apply
Theorem 6 to several examples.

2. The directed graph Γn associated with An

We will form a partition of the directed graph Γn, which was defined in §1,
into chains and cycles. The Jordan decomposition of the adjacency matrix
An will be related to the lengths of these chains and cycles. Recall that for
the function f : N → N and natural number n ∈ N, we define Γn to be the
directed graph with vertices 1, . . . , n having a directed edge from j to i if and
only if f(j) = i.

Definition 1. A chain in Γn is an ordered list of distinct vertices C =
{c1, c2, . . . , cr} such that f(cj) = cj+1 for 1 ≤ j < r but f(cr) 6= c1. A cycle
in Γn is an ordered list of distinct vertices Z = {z1, z2, . . . , zr} such that
f(zj) = zj+1 for 1 ≤ j < r and f(zr) = z1. In either case, we call r the length
of the chain or cycle and write r = lenC or r = lenZ.

Note that in Definition 1 a single vertex {i} is a chain or a cycle, but
since either f(i) 6= i or f(i) = i, it is not both a chain and a cycle. Although

2



an arbitrary directed graph may contain two unequal cycles that share a
common vertex, this is not possible for Γn. Since Γn results from a function
f : N→ N, if Z1 and Z2 are cycles that share a common vertex, then Z1 = Z2.
Thus, unequal cycles in Γn are disjoint.

Definition 2. If C = {i1, . . . , is} is a chain of Γn, then is is called the
terminal point of the chain. A vertex k of Γn such that f(k) > n is a
terminal point of Γn. If k is a vertex of Γn such that f(i) = f(j) = k for
some i and j with i 6= j, then k is a merge point of Γn.

Definition 3. A partition of Γn is a collection of disjoint cycles and chains
whose union is Γn. A proper partition of Γn is a partition

P = {Z1, . . . , Zr, C1, . . . , Cs}

where Z1, . . . , Zr are cycles and C1, . . . , Cs are chains satisfying the following
properties:

1. Each cycle in Γn is equal to Zi for some i.

2. If Γ
(i)
n is the subgraph of Γn obtained by deleting the vertices in the

cycles Z1, . . . , Zr and in the chains C1, . . . , Ci, then Ci+1 is a chain of

maximal length in Γ
(i)
n .

Lemma 1. Proper partitions of Γn exist.

Proof. As noted above, the cycles of Γn are mutually disjoint. Label them as
Z1, . . . , Zr. Let Γ

(0)
n be the subgraph of Γn obtained by removing all vertices

belonging to the cycles Z1, . . . , Zr. The graph Γ
(0)
n is an acyclic graph. Then

inductively define Ci and Γ
(i)
n for i ≥ 1 by choosing Ci to be a chain of

maximal length in Γ
(i)
n and letting Γ

(i+1)
n be the subgraph of Γ

(i)
n obtained by

deleting the vertices of Ci.

If

P = {Z1, . . . , Zr, C1, . . . , Cs} and P ′ = {Z ′1, . . . , Z ′r′ , C ′1′ , . . . , C ′s′}

are any two proper partitions of Γn, then it is clear that r = r′ and the cycles
Z1, . . . , Zr are the same as the cycles Z ′1, . . . , Z

′
r′ up to reordering. It may be

less obvious that s = s′ and lenCi = lenC ′i for 1 ≤ i ≤ s. This fact is stated
in Corollary 7 below.
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Example 1. Suppose f : N→ N takes the values

1 7→ 1, 2 7→ 3, 3 7→ 4, 5 7→ 6, 6 7→ 7, 7 7→ 5, 8 7→ 10, 9 7→ 500, 10 7→ 4, . . .

The graph Γ10 and adjacency matrix A10 are:

A10 =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0



1

2 3 4 5

6

78
10

9

The vertices 4 and 5 are merge points of Γn. The vertex 9 is a terminal point
of Γ10. Two proper partitions of Γ10 are:

Z1 = {1} Z ′1 = {5, 6, 7}
Z2 = {5, 6, 7} Z ′2 = {1}
C1 = {2, 3, 4} C ′1 = {8, 10, 4}
C2 = {8, 10} C ′2 = {2, 3}
C3 = {9} C ′3 = {9}

Example 2. Suppose f : N→ N takes the values

1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 100, 6 7→ 7, 7 7→ 4, . . .

The graph Γ7 and adjacency matrix A7 are:

A7 =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0


2 3 41 5

6 7
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· · ·· · ·

· · ·c1 cm

c′1 c′k c′m′f(cm)
· · ·

z

Figure 1: If the chain C ′ = {c′1, . . . , c′m′} contains the merge point f(cm) = f(c′k), as in
Lemma 2, then k ≥ m. There exists z on the chain C ′ with fm(z) = fm(c1) = f(cm).

Vertex 4 is a merge point, and vertex 5 is a terminal point of Γ7. A proper
partition of Γ7 is

C1 = {1, 2, 3, 4, 5} C2 = {6, 7},
while an improper partition of Γ7 is

C ′1 = {6, 7, 4, 5} C ′2 = {1, 2, 3}.

Observe that in the proper partition, the chain containing the merge point 4
is longer than the other chain.

The terminal and merge points of Γn will play a crucial role in the Jor-
dan decomposition of An. The next lemma makes precise the situation in
Example 2 as well as the case in which the merge point belongs to a cycle.

Lemma 2. Let C = {c1, . . . , cm} be any chain in a proper partition of Γn.
Then exactly one of the following occurs:

1. The terminal point cm of the chain is a terminal point of the graph Γn.

2. The point f(cm) is a merge point of Γn.

Furthermore, if f(cm) is a merge point and f(cm) belongs to another chain
C ′ = {c′1, . . . , c′m′}, then f(cm) = f(c′k) where k ≥ m. (This is illustrated in
Figure 1.) Consequently, if f(cm) is a merge point belonging to either a cycle
or a chain, then there is a unique vertex z in the cycle or chain containing
f(cr) such that fm(z) = fm(c1) = f(cm), where fm is the composition of f
with itself m times.

Proof. Suppose the terminal point cm of the chain is not a terminal point
of the graph Γn. If f(cm) belongs to one of the cycles of Γn, then f(cm)
is a merge point since f(cm) has both cm and some point of the cycle as
preimages. If f(cm) belongs to another chain C ′, then either f(cm) is the
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initial point of the chain C ′ or it is not. If f(cm) is not the initial point
of C ′, then cm and a point of C ′ are preimages of f(cm) making f(cm) a
merge point. If f(cm) is the initial point of C ′, then the partition is not
proper because C and C ′ could be joined to form a longer chain, which is a
contradiction. This proves that either cm is a terminal point of Γn or f(cm)
is a merge point of Γn.

Now, suppose f(cm) belongs to another chain C ′ = {c′1, . . . , c′m′}. Then
f(cm) = f(c′k) for some k. Necessarily k < m′. If, by way of contradiction,
k < m, then the vertices in the two chains C and C ′ could be repartitioned
to belong to the new chains

C ′′ = {c1, . . . , cm, c′k+1, . . . , c
′
m′} and C ′′′ = {c′1, . . . , c′k}.

Since k < m′,
lenC ′′ = m′ − k +m > m = lenC.

Since k < m,
lenC ′′ = m′ − k +m > m′ = lenC ′.

Thus, the original pair of chains C and C ′ violate the maximality condition
of a proper partition in Definition 3, a contradiction. Therefore k ≥ m.

3. The Jordan Structure of An

In this section we will state the main result of this paper (Theorem 6)
which describes the Jordan canonical form of the adjacency matrix An of the
graph Γn. We will need several standard facts (Propositions 3 and 4 below)
about the Jordan canonical form. Good references for this material are [4,
Ch. 7], [5, Ch. 3], and [8, Ch. 6].

Definition 4. For a complex number λ and natural number m, Jm(λ) will
denote the m×m matrix

Jm(λ) =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 .
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Definition 5. Let A be an n×n matrix with complex entries. A nonzero vec-
tor v is a generalized eigenvector of A corresponding to the complex number
λ if (A− λI)pv = 0 for some positive integer p.

Definition 6. Let v be a generalized eigenvector of A for the eigenvalue λ
and let p be the smallest positive integer such that (A − λI)pv = 0. Then
the ordered set

{(A− λI)p−1v, (A− λI)p−2v, . . . , (A− λI)v, v} (1)

is a chain of generalized eigenvectors of A corresponding to λ. Observe that
the first elements of the list, (A− λI)p−1v, is an ordinary eigenvector.

Note. In the literature, many authors refer to the list of generalized eigen-
vectors in Definition 6 as a cycle of generalized eigenvectors. In the context
of this paper, it is better to call it a chain.

Proposition 3 (Linear Independence of Generalized Eigenvectors). Let λ be
an eigenvalue of A and let {γ1, . . . , γs} be chains of generalized eigenvectors
of A corresponding to λ. If the initial vectors of the γi’s form a linearly
independent set, then the γi’s are disjoint (γi ∩ γj = ∅ for i 6= j) and the
union ∪si=1γi is linearly independent.

Proposition 4 (Jordan Canonical Form). Let A be an n×n complex matrix.
Then there exists a basis β of Cn consisting of disjoint chains β1, . . . , βr of
generalized eigenvectors of lengths n1, . . . , nr for the eigenvalues λ1, . . . , λr
with n = n1 + · · · + nr such that if Q is the matrix whose columns are the
members of the basis β then

Q−1AQ = Jn1(λ1)⊕ · · · ⊕ Jnr(λr).

As a preliminary step to determining the Jordan decomposition of the
adjacency matrix An of the graph Γn, we begin with the following simple
observation:

Lemma 5. Every eigenvalue of An is either 0 or a root of unity.

Proof. The jth column of An is a zero column if f(j) > n. The jth column
contains a single 1 if 1 ≤ f(j) ≤ n. Thus, for any k ∈ N, the matrix product
Akn also consists of either zero columns or columns containing a single 1.
Consequently, the infinite sequence

I, An, A
2
n, A

3
n, . . .
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must contain a repetition since there are only finitely many distinct n × n
matrices whose columns are zero columns or contain a single 1. Let 0 ≤ i < j
be exponents such that Ain = Ajn. Then An satisfies the polynomial xj−xi =
xj−i(xj − 1). The eigenvalues of An must be a subset of the roots of this
polynomial. Hence, all eigenvalues are either zero or roots of unity.

We are now ready to state the main result of this paper:

Theorem 6. Let f : N → N be a function. Let Γn be the directed graph
associated with f for the natural number n, and let An be its adjacency matrix
as defined in §1. Suppose

P = {Z1, . . . , Zr, C1, . . . , Cs}

is a proper partition of Γn, as in Definition 3, where Z1, . . . , Zs are the cycles
and C1, . . . , Cs are the chains. Write the lengths of the cycles and chains as

lenZj = `j (1 ≤ j ≤ r) and lenCj = mj (1 ≤ j ≤ s).

Let ωj = exp(2πi/`j) be a primitive `jth root of unity. The Jordan decom-
position of An contains the following 1× 1 Jordan blocks for the eigenvalues
which are roots of unity:

J1(ω
k
j ) for 1 ≤ j ≤ r and 1 ≤ k ≤ `j.

The Jordan decomposition contains the following blocks associated with the
eigenvalue 0:

Jm1(0), Jm2(0), . . . , Jms(0).

Remark. The proof of Theorem 6 (given in §4) will construct an explicit
basis (Lemmas 8 and 10) for Cn consisting of generalized eigenvectors of An.
Letting Q be the matrix whose columns are these vectors gives J = Q−1AnQ
where J is the Jordan decomposition of An.

Corollary 7. Suppose

P = {Z1, . . . , Zr, C1, . . . , Cs} and P ′ = {Z ′1, . . . , Z ′r′ , C ′1′ , . . . , C ′s′}

are any two proper partitions of Γn. Then s = s′ and lenCj = lenC ′j for
1 ≤ j ≤ s.
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Proof. This is an immediate consequence of the uniqueness of the Jordan
decomposition of An. By Theorem 6, the block sizes associated with the
eigenvalue 0 are given by the two descending lists of numbers:

m1 ≥ m2 ≥ · · · ≥ ms and m′1 ≥ m′2 ≥ · · · ≥ m′s′ .

So, s = s′ and mj = m′j for 1 ≤ j ≤ s.

4. Proof of Theorem 6

The proof of Theorem 6 will proceed as follows: From Lemma 5, each
eigenvalue of An is either a root of unity or zero. In Lemma 8 below, we
attached an eigenvector of An associated with a root of unity to each vertex
of each cycle in Γn. In Lemma 9, this set of eigenvectors for the roots of
unity is shown to be linearly independent. In Lemma 10, we attach chains of
generalized eigenvectors of An for the eigenvalue 0 to chains of the graph Γn.
In Lemma 11 we show that these generalized eigenvectors also form a linearly
independent set and that the set of all generalized eigenvectors attached to
the vertices of Γn via Lemmas 8 and 10 is a Jordan basis of Cn for the matrix
An.

Throughout the section P = {Z1, . . . , Zr, C1, . . . , Cs} will be a proper
partition of Γn. Write the lengths of the cycles and chains as

lenZj = `j (1 ≤ j ≤ r) and lenCj = mj (1 ≤ j ≤ s).

We have the relationship

`1 + · · ·+ `s +m1 + · · ·+ms = n.

The ith standard basis vector of Cn will be denoted by ei.

Lemma 8. Let Z = {z1, . . . , z`} be any cycle in the partition P , and let
ω = exp(2πi/`) be a primitive `th root of unity. Then the vector

vk =
∑̀
j=1

ω−kjezj (2)

is an eigenvector of An for the eigenvalue ωk. Furthermore,

span{v1, . . . , v`} = span{ez1 , . . . , ez`}. (3)

We will say that the eigenvector vk is attached to the vertex zk.
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Proof. Since Anezj = ezj+1
for 1 ≤ j < ` and Aez` = ez1 and since ω` = 1, we

have

Anvk =
∑̀
j=1

ω−kjAnej =
`−1∑
j=1

ω−kjezj+1
+ ω−k`ez1

= ez1 +
∑̀
j=2

ω−k(j−1)ezj = ωk
∑̀
j=1

ω−kjezj = ωkvk.

Because the eigenvectors v1, . . . , v` all belong to distinct eigenvalues they form
a linearly independent set whose span has dimension `. But span{v1, . . . , v`}
is a subspace of span{ez1 , . . . , ez`} whose dimension is also `. So, the two
subspaces are equal.

Lemma 9. In a proper partition P = {Z1, . . . , Zr, C1, . . . , Cs} of Γn, the
set of all eigenvectors attached to the vertices in the cycles Z1, . . . , Zr is a
linearly independent set.

Proof. This follows immediately from equation (3) in Lemma 8 and the fact
that any two cycles in Γn are disjoint.

Next we determine generalized eigenvectors of An associated with the
eigenvalue 0. Recall from Lemma 2, that if C = {c1, . . . , cs} is a chain in a
proper partition of Γn, then either cs is a terminal point of Γn or f(cs) is a
merge point.

Lemma 10. Let C = {c1, . . . , cm} be any chain in a proper partition of Γn.

1. If cm is a terminal point of the graph Γn, then

{ecm , ecm−1 , . . . , ec2 , ec1}

is a chain of generalized eigenvectors of An for the eigenvalue 0.

2. If f(cm) is a merge point of Γn, let z be the vertex in the cycle or chain
containing f(cm) such that fm(z) = f(cm). (z exists by Lemma 2.)
Then

{ecm − efm−1(z), . . . , ec3 − ef2(z), ec2 − ef(z), ec1 − ez}

is a chain of generalized eigenvectors of An for the eigenvalue 0.
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In the first case, we say that the vector eci is attached to the vertex ci. In the
second case, we say the vector eci − ef i−1(z) is attached to the vertex ci.

Note. By convention, the first element of a chain of generalized eigenvectors,
as in Equation (1) is the eigenvector, but the eigenvector corresponds to the
last element of the chain {c1, . . . , cm} in Lemma 10. So, the order of indices
in the subscripts is reversed.

Proof. If the first case, cm is a terminal point of the graph Γn. This means
that f(cm) > n which implies that the cm column of An is zero. Then
Anecm = 0. So, ecm is an eigenvector of An for the eigenvalue 0. Because
C = {c1, . . . , cm} is a chain in Γ, Aneci = eci+1

for 1 ≤ i < m. Therefore
{ecm , . . . , ec1} is a chain of generalized eigenvectors of An for the eigenvalue 0.

In the second case, ecm−efm−1(z) is not the zero vector since fm−1(z) does
not belong to the chain C. Then

An
(
ecm − efm−1(z)

)
= ef(cm) − efm(z) = 0.

So, ecm − efm−1(z) is an eigenvector for the eigenvalue 0. Since C is a chain,
An
(
eci − ef i−1(z)

)
= eci+1

− ef i(z) for 1 ≤ i < m. Thus,

{ecm − efm−1(z), . . . , ec3 − ef2(z), ec2 − ef(z), ec1 − ez}

is a chain of generalized eigenvectors of An for the eigenvalue 0.

With Lemmas 8 and 10 we have attached a generalized eigenvector to each
of the n vertices of the graph Γn. The final step of the proof of Theorem 6 is to
show that this collection of generalized eigenvectors is linearly independent.
Then the chains of generalized eigenvectors that these lemmas attach to a
proper partition of Γn will form a Jordan basis of Cn for the matrix An.

Lemma 11. Let P = {Z1, . . . , Zr, C1, . . . , Cs} be a proper partition of Γn.
The set of all generalized vectors attached to vertices of the cycles Z1, . . . , Zr
and to the vertices of the chains C1, . . . , Cs is a linearly independent set of
n vectors. Consequently, this set forms a Jordan basis of Cn for the matrix
An.

Proof. In Lemma 9 it was shown that the set of eigenvectors attached to
vertices belonging to cycles is linearly independent. All of these eigenvectors
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are roots of unity which are, of course, nonzero. If len(Zi) = `i, then there
are

`1 + · · ·+ `s

such eigenvectors.
If len(Ci) = mi, then there are

m1 + · · ·+ms

generalized vectors attached to the vertices of the chains C1, . . . , Cs. These
generalized eigenvectors all belong to the generalized eigenspace of the eigen-
value 0. If these vectors are linearly independent, then then we will have a
total of

n = `1 + · · ·+ `s +m1 + · · ·+ms

linearly independent generalized eigenvectors since the union of linearly in-
dependent generalized eigenvectors from different generalized eigenspaces is
linearly independent.

Thus, it remains to be shown that the generalized eigenvectors attached
to the chains C1, . . . , Cs form a linearly independent set.

Write ` = `1 + · · · + `r, and let σ : {1, . . . , n} → {1, . . . , n} be a permu-
tation that maps the numbers 1, . . . , ` to the vertices belonging to the cycles
Z1, . . . , Zr and such that the chains (as ordered lists) are

C1 = {σ(`+ 1), . . . , σ(`+m1)}
C2 = {σ(`+m1 + 1), . . . , σ(`+m1 +m2)}

...

Cs = {σ(`+m1 + · · ·+ms−1 + 1), . . . , σ(`+m1 + · · ·+ms)}.

By Lemma 10, the eigenvector attached to the last element of the chain
Cj is one of the following:

eσ(`+m1+···+mj) or eσ(`+m1+···+mj) − eσ(zj), (4)

for some appropriate zj. In the second case, since f(σ(`+m1+ · · ·+mj)) is a
merge point, σ(zj) belongs either to a longer chain than Cj or σ(zj) belongs
to a cycle. Either way, from the definition of σ,

zj < `+m1 + · · ·+mj−1 + 1.
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Thus, the n× s matrix whose jth column is

e`+m1+···+mj
or e`+m1+···+mj

− ezj ,

for 1 ≤ j ≤ s, is upper triangular. Since no column is the zero vector,
this matrix has linearly independent columns. Permuting the rows of this
matrix does not alter the linear independence of the columns. Thus, the set
of eigenvectors from (4) for 1 ≤ j ≤ s in a linearly independent set. Since the
vectors in (4) were the initial vectors of chains of generalized eigenvectors,
Proposition 3 implies that the set of all generalized eigenvectors from those
chains is a linearly independent set. Thus, the lemma has been proved.

The proof of Theorem 6 is now complete.

5. Examples and Applications

We will next illustrate Theorem 6 with several examples.

Example 3. We will apply Theorem 6 to find the Jordan canonical form of
the matrix A10 from Example 1. In that example, f : N→ N is defined by

1 7→ 1, 2 7→ 3, 3 7→ 4, 5 7→ 6, 6 7→ 7, 7 7→ 5, 8 7→ 10, 9 7→ 500, 10 7→ 4, . . .

and we found a proper partition of Γ10 to be

Z1 = {1}, Z2 = {5, 6, 7}, C1 = {2, 3, 4}, C2 = {8, 10}, C3 = {9}.

Let ω = exp(2πi/3). Then ω is a primitive cube root of unity and ω3 = 1.
By the theorem, the Jordan blocks in the Jordan canonical form of A10 will
be

J1(1), J1(ω), J1(ω
2), J1(ω

3), J3(0), J2(0), J1(0).

Using Lemmas 8 and 10 we may find a basis β = {v1, . . . , v10} of gener-
alized eigenvectors (taking care to reverse the order of indices in the chains)
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as follows:

vertex generalized eigenvector

1 v1 = e1
5 v2 = ω−1·1e5 + ω−1·2e6 + ω−1·3e7 = ω2e5 + ωe6 + e7
6 v3 = ω−2·1e5 + ω−2·2e6 + ω−2·3e7 = ωe5 + ω2e6 + e7
7 v4 = ω−3·1e5 + ω−3·2e6 + ω−3·3e7 = e5 + e6 + e7
4 v5 = e4 − e7 (f(4) = f(4) = 5 is a merge point.)
3 v6 = e3 − e6 (f 2(3) = f 2(3) = 5 is a merge point.)
2 v7 = e2 − e5 (f 3(2) = f 3(5) = 5 is a merge point.)
10 v8 = e10 − e3 (f(10) = f(3) = 4 is a merge point.)
8 v9 = e8 − e2 (f 2(8) = f 2(2) = 4 is a merge point.)
9 v10 = e9 (The chain containing 9 has a terminal point.)

Thus setting

Q = (v1 v2 · · · v10) =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1 0 0
0 0 0 0 1 0 0 0 0 0
0 ω2 ω 1 0 0 −1 0 0 0
0 ω ω2 1 0 −1 0 0 0 0
0 1 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0


gives the Jordan canonical form

Q−1A10Q =



1

ω2

ω

1

0 1 0
0 0 1
0 0 0

0 1
0 0

0



.
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Example 4 (The Collatz Problem). Let f be the function

f(n) =

{
3n+1

2
if n is odd,

n
2

if n is even.

The well-known Collatz conjecture states that, for each k ∈ N, the sequence

k, f(k), (f ◦ f)(k), (f ◦ f ◦ f)(k), . . .

contains the number 1. For an extensive annotated bibliography of the liter-
ature on this problem see Lagarias [6, 7]. For any n ∈ N, we may consider
the n× n matrix An and graph Γn associated with the the Collatz function.
In this case, we will call An the Collatz matrix. For example,

A8 =



0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0


We may apply Theorem 6 to the study of An and the Collatz problem. In [1],
Dias et. al. also study the Collatz conjecture from the point of view of finite
dimensional matrices, and they establish certain determinantal identities for
these matrices.

Working several examples for small values of n (say n up to a few thou-
sand) quickly leads to the following conjecture:

Conjecture 12. For n ∈ N, let Γn and An be the graph and adjacency matrix
associated with the Collatz function. Then

1. The characteristic polynomial of An is det(xIn − An) = xn−2(x2 − 1).
2. For n ≥ 2, the only cycle in the graph Γn is the two-cycle {1, 2}.
3. For any fixed k ≥ 3, if n is sufficiently large, then k belongs to the same

component of graph as the cycle {1, 2}.
We point out that, since this conjecture implies the Collatz conjecture,

its proof would likely be quite difficult. The paper of Dias et. al. [1] has some
discussion about the characteristic polynomial.

We ask the following questions:
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Open Problem 13. Let P = {Z1, . . . , Zr, C1, . . . , Cs} be a proper partition
of the graph Γn associated with the Collatz function.

1. Is r = 1?

2. What is the length len(C1) = m1 of the longest chain?

3. How many connected components does the graph Γn have?

As a consolation prize, we can precisely describe the number s of chains
in a proper partition:

Theorem 14. For n ≥ 2, let An be the n × n Collatz matrix, let Γn be the
associated graph, and let P = {Z1, . . . , Zr, C1, . . . , Cs} be a proper partition
of Γn. Then the number s of chains in the partition which, by Theorem 6, is
also equal to the number of Jordan blocks for the eigenvalue 0 of the matrix
An is

n−
⌊n

2

⌋
−
⌊
n− 2

3

⌋
+

⌊
n− 4

6

⌋
=



2bn/6c if n ≡ 0 (mod 6),

2bn/6c+ 1 if n ≡ 1 (mod 6),

2bn/6c if n ≡ 2 (mod 6),

2bn/6c+ 1 if n ≡ 3 (mod 6),

2bn/6c+ 2 if n ≡ 4 (mod 6),

2bn/6c+ 2 if n ≡ 5 (mod 6).

Proof. From the Jordan decomposition theorem, the number of Jordan blocks
associated with the eigenvalue λ of An is n − rank(Tn − λIn). In the case
λ = 0, this is s = n− rank(An). So, we need to compute rank(An).

The even numbered columns of An consist of the standard basis vectors

e1, e2, . . . , ebn/2c.

The odd numbered columns of An which are also nonzero consist of the
standard basis vectors

e2, e5, e8, e11, . . . , e3j+2,

where j = bn−2
3
c is the largest integer such that 3j + 2 ≤ n. The elements of

the second list in common with the first list are

e2, e5, . . . , e3k+2
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where k = bn/2−2
3
c = bn−4

6
c is the largest integer such that 3k+ 2 ≤ n/2. So,

the degree of the column space of An is

rank(An) =
⌊n

2

⌋
+ (j − k) =

⌊n
2

⌋
+

⌊
n− 2

3

⌋
−
⌊
n− 4

6

⌋
,

which proves that the number of Jordan blocks for the eigenvalue 0 is

s = n− rank(An) = n−
⌊n

2

⌋
−
⌊
n− 2

3

⌋
+

⌊
n− 4

6

⌋
We obtain the remaining portion of the formula by writing n = 6bn/6c + `
where ` ∈ {0, 1, 2, 3, 4, 5} and considering each case.
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