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Abstract

We construct a measure such that if {pn(z)} is the sequence of orthogonal polynomials relative to that

measure, then the Riemann Hypothesis with simple zeros is true if and only if limn→∞ p2n(z)
p2n(0)

= �(1/2+iz)
�(1/2)

where �(s) = 1
2 s(s − 1)�−s/2�(s/2)�(s) is the Riemann �-function.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Riemann Hypothesis; Orthogonal polynomials; Simple zeros

1. Introduction

Let �(s) = ∑∞
n=1 n−s be the Riemann zeta function. Riemann showed that �(s) has an analytic

continuation to all s with the exception of a simple pole at s = 1. The Riemann �-function,
defined as �(s) = 1

2 s(s − 1)�−s/2�(s/2)�(s), is an entire function satisfying �(s) = �(1 − s).
The Riemann Hypothesis is the conjecture that all of the zeros of �(s) lie on the ‘critical line’which
is the line with real part 1/2. The Prime Number Theorem, proved independently by Hadamard
and de la Vallée Poussin in 1896, is equivalent to the fact that all zeros of �(s) lie in the critical strip
0 < Re(s) < 1. Let M(T ) denote the number of zeros in the critical strip with 0 < Im(s)�T

that lie on the critical line. Hardy [6] proved that M(T ) tends to infinity as T tends to infinity.
Hardy and Littlewood [7] showed that M(T ) > AT for some positive constant A. Selberg [12]
proved that M(T ) > AT log T for some positive constant A. Since the number N(T ) of zeros
in the critical strip up to height T is known to be asymptotic to T

2� log( T
2� ), Selberg showed

that a positive proportion of the zeros are on the critical line. Extensive numerical calculations,
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such as [2,3,9–11,16], have supported the Riemann Hypothesis. The numerical calculations have
supported the stronger conjecture that, in addition to lying on the critical line, the zeros of �(s)

are simple. In this paper, we show that the Riemann Hypothesis with simple zeros is equivalent to
the existence of a certain family of orthogonal polynomials {pn(z)} such that limn→∞ p2n(z)

p2n(0)
=

�(1/2+iz)

�(1/2)
.

We will now describe the main result of this paper. We will define a step function F related to the
zeros of �(s). Let �(z) = �(1/2+iz). Then the zeros of �(z) lie in the strip −1/2 < Im(z) < 1/2,
�(z) is real for real z, �(z) = �(−z), and any non-real zeros of �(z) occur in complex conjugate
pairs. For z = x + iy in the region x�0, −1/2�y�1/2, let f (z) be analytic and satisfy:

f (z) is real for real z, (1)

Re
(
f (z)

)
> 0, (2)

|f (x + iy)| < e−cx, (3)

where c is a positive constant. For T �0 let

F(T ) = 1

2�i

∫
�T

�′(z)
�(z)

f (z) dz, (4)

where �T is the positively oriented boundary of the region 0�x�T , −1/2�y�1/2. Label the
zeros of �(z) in the region x > 0, 0�y < 1/2 as �k + i�k where �k ��k+1. If T is not equal to
any �k , F(T ) may be represented as the finite sum

F(T ) =
∑
�k<T
�k=0

f (�k) +
∑
�k<T
�k>0

{
f (�k + i�k) + f (�k − i�k)

}
.

For T < 0 let F(T ) = −F(T ). If f (z) were replaced by 1, F(T ) would be the number of zeros in
the critical strip up to height T. However, we imposed the restriction in inequality (3) to guarantee
the existence of certain integrals.

For polynomials p(x) and q(x) with real coefficients we define an inner product by the
Riemann–Stieltjes integral

〈p(x), q(x)〉 =
∫ ∞

−∞
p(x)q(x) dF (x).

Applying the Gram–Schmidt orthogonalization process to the polynomials 1, x, x2, . . . produces
an orthogonal family of polynomials {pn(x)} where the degree of pn(x) is n. In this case, p2n(x)

is an even function while p2n+1(x) is an odd function.
Then we have:

Theorem 1. The Riemann Hypothesis with simple zeros is true if and only if

lim
n→∞

p2n(z)

p2n(0)
= �(1/2 + iz)

�(1/2)

for every z ∈ C.

We note that the proof shows that limn→∞ p2n(z)
p2n(0)

= limn→∞ p2n+1(z)

zp′
2n+1(0)

. Thus the theorem could

be stated in terms of the odd degree polynomials p2n+1(z) as well.
The proof of Theorem 1 is presented in §3.
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2. A few facts about orthogonal polynomials

In this section, we will recall several facts from the general theory of orthogonal polynomials
that will be needed in the proof of Theorem 1. For the basic theory, we refer the reader to the books
by Szëgo [14] and Chihara [4]. Our review is based on these two works but especially on [4].

A bounded non-decreasing function � is called a distribution function if its moments

�n =
∫ ∞

−∞
xn d�(x) (5)

exist for n = 0, 1, 2, . . . . Two distribution functions �1 and �2 are substantially equal if and
only if there is a constant K such that �1(x) = �2(x) + K at all common points of continuity.
The spectrum of � is the set

S(�) = {x | �(x + 	) − �(x − 	) > 0 for all 	 > 0}.
If S(�) is infinite, then the expression

〈p(x), q(x)〉 =
∫ ∞

−∞
p(x)q(x) d�(x)

defines an inner product on the space of polynomials with real coefficients. Using this inner product
we orthogonalize the set of non-negative powers of x to create a family {pn(x)} of orthogonal
polynomials with real coefficients using the Gram–Schmidt procedure:

p0(x) = 1,

pn(x) = xn −
n−1∑
k=0

〈xn, pk〉
〈pk, pk〉pk(x) for k�1.

Lemma 2.1 (Szegö [14, Theorem 3.3.1] or Chihara [4, Theorem I.5.2]). The zeros of pn(x) are
real and simple for each n�1.

We will label the zeros of pn(x) as yn1 < yn2 < · · · < ynn.

Lemma 2.2 (Szegö [14, Theorem 3.3.3] or Chihara [4, Theorem I.5.3]). The zeros of pn(x) and
pn+1(x) interlace. That is,

yn+1,i < yni < yn+1,i+1, i = 1, 2, . . . , n.

Furthermore, between any two zeros of pn(x) there is at least one zero of pm(x) for m > n.

Using the moments from Eq. (5) we define a moment functional on the space of polynomials by

L[p(x)] =
∫ ∞

−∞
p(x) d�(x) =

n∑
k=0

ck�k,

where p(x) = c0 + c1x + · · · + cnx
n.
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Lemma 2.3 (Szegö [14, Theorem 3.4.1] or Chihara [4, Theorem I.6.1]). There are numbers
An1, An2, . . . , Ann such that for every polynomial �(x) of degree at most 2n − 1

L[�(x)] =
n∑

k=1

Ank�(ynk).

The numbers Ank are all positive and An1 + · · · + Ann = �0.

The equation in Lemma 2.3 is called the Gauss quadrature formula. The numbers Ank are
sometimes called Christoffel numbers.

The zeros of the polynomials {pn(x)} are strongly related to the spectrum S(�). Let

�n(x) =
⎧⎨
⎩

0 if x < yn1,

An1 + · · · + Anp if ynp �x < yn,p+1 where 1�p < n,

�0 if x�ynn.

(6)

Lemma 2.4 (Chihara [4, Theorem II.3.1]). There is a subsequence of {�n} that converges
on (−∞, ∞) to a distribution function 
 which has a infinite spectrum and such that �n

= ∫∞
−∞ xn d�(x) = ∫∞

−∞ xnd
(x).

It is not generally true that 
 is substantially equal to �. Distribution functions, such as 
, that
are subsequential limits of {�n} are called natural representatives of the moment functional L.

Lemma 2.5 (Szegö [14, Theorem 3.41.2] or Chihara [4, Theorem II.4.1]). The open interval
(yni, yn,i+1) contains at least one spectral point of the function �.

Lemma 2.6 (Chihara [4, Theorem II.4.3]). Let 
 be a natural representative of L and let s ∈
S(
). Then every neighborhood of s contains a zero of pn(x) for infinitely many values of n.

Given a list of moments {�n}∞n=0, the Hamburger moment problem consists of classifying the
distribution functions � such that

�n =
∫ ∞

−∞
xnd�(x), n = 0, 1, 2, . . . .

If all solutions � of the Hamburger moment problem are substantially equal, we say the moment
problem is determined.

Carleman gave a sufficient (but not necessary) condition for a moment problem to be determined.

Lemma 2.7 (Shohat and Tamarkin [13, Theorem 1.11] or Akhiezer [1, p. 85]). The moment
problem �n = ∫∞

−∞ xnd�(x) is determined if

∞∑
n=1

�−1/2n
2n = ∞.

The most crucial part of the proof of Theorem 1 will involve showing that the Hamburger
moment problem for the distribution function F, defined in Eq. (4), is determined. We will now
proceed with the proof.
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3. Proof of Theorem 1

We begin by showing that the expression

〈p(x), q(x)〉 =
∫ ∞

−∞
p(x)q(x) dF (x) (7)

defines an inner product on the space of polynomials with real coefficients.

Lemma 3.1. The nth moments

�n =
∫ ∞

−∞
xn dF

exist, and Eq. (7) defines an inner product on the space of polynomials with real coefficients.

Proof. Label the zeros of �(1/2+iz) in the region {x+iy | x > 0, 0�y < 1/2} as �k +i�k where
�k ��k+1 for k�1. If �k + i�k is a root, so is �k − i�k . Also recall from (3) that |f (x + iy)| <

exp(−cx) when x > 0 and −1/2 < y < 1/2. Then∫ ∞

0
xndF =

∑
k

�k=0

�n
kf (�k) +

∑
k

�k �=0

�n
k

(
f (�k + i�k) + f (�k − i�k)

)

�
∞∑

k=1

�n
ke

−c�k + 2
∞∑

k=1

�n
ke

−c�k = 3
∞∑

k=1

�n
ke

−c�k . (8)

We need to know the approximate size of �k . Recall that the number N(T ) of zeros of �(z) in the
critical strip up to height T is known [15, p. 214] to satisfy

N(T ) ∼ T

2�
log

(
T

2�

)
.

It follows that if the zeros in the critical strip with Im(z) > 0 are labelled as �k + itk with tk+1 � tk ,
then

tk ∼ 2�k

log k
. (9)

By Eq. (9) there exist positive constants A and B such that

A
k

log k
< �k−1 < B

k

log k
(10)

for k�2. Combining inequalities (8) and (10) gives∫ ∞

0
xndF �3Bn

∞∑
k=2

(
k

log k

)n

exp

(
−cA

k

log k

)
.

The sum clearly converges. This can be seen, for example, by using the limit comparison test
from elementary calculus with the convergent series

∑
k−2. Because F(T ) = −F(−T ), �n = 0

for odd n. When n is even

�n =
∫ ∞

−∞
xndF = 2

∫ ∞

0
xndF �6Bn

∞∑
k=2

(
k

log k

)n

exp

(
−cA

k

log k

)
. (11)
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This shows that the moments �n = ∫∞
−∞ xn dF exist for n�0. Thus the expression 〈p(x), q(x)〉,

defined by Eq. (7), exists for any real polynomials p(x) and q(x). The bilinearity is appar-
ent. Because the measure dF has infinite support 〈p(x), p(x)〉 > 0 unless p(x) = 0. There-
fore, the expression 〈p(x), q(x)〉 defines an inner product on the space of polynomials with real
coefficients. �

Lemma 3.2. The Hamburger moment problem for the moments of the distribution function F

�n =
∫ ∞

−∞
xn dF,

is determined.

Proof. By extending the proof of the previous lemma we will obtain a sufficiently good upper
bound on �n to apply Carleman’s criterion (Lemma 2.7). We begin by estimating the summation
in inequality (11). Let

S(n) =
∞∑

k=2

(
k

log k

)n

exp

(
−cA

k

log k

)
.

Split the sum into two parts:

S(n) =
∑

2�k �M+1

(
k

log k

)n

exp

(
−cA

k

log k

)
︸ ︷︷ ︸

S1(n)

+
∑

k>M+1

(
k

log k

)n

exp

(
−cA

k

log k

)
︸ ︷︷ ︸

S2(n)

.

We will determine bounds for S1(n) and S2(n). A careful choice of M will lead to a bound on
S2(n) that is much smaller than the bound on S1(n).

By elementary calculus the function ( k
log k

)n exp(−cA k
log k

) has a maximum of ( n
ecA

)n when
k

log k
= n

cA
. This gives a bound on S1(n):

S1(n)�M
( n

ecA

)n

. (12)

Now assume that M is sufficiently large such that the following three conditions hold:

k

log k
>

n

cA
for k�M, (13)

(
k

log k

)(
log k − 1

log2 k

)
> 1 for k�M, (14)

M

log M
>

(
2(n + 1)

cA

)2

. (15)
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Condition (13) ensures that the function ( k
log k

)n exp(−cA k
log k

) decreases for k�M . The reasons
for assuming conditions (14) and (15) will become apparent in the following calculation:

S2(n) =
∑

k>M+1

(
k

log k

)n

exp

(
−cA

k

log k

)

<

∫ ∞

M

(
k

log k

)n

exp

(
−cA

k

log k

)
dk by (13),

<

∫ ∞

M

(
k

log k

)n+1

exp

(
−cA

k

log k

)(
ln k − 1

ln2 k

)
dk by (14),

=
∫ ∞

M/ log M

wn+1 exp(−cAw) dw.

For any positive � and w, w <
exp(�w)

� . Setting � = cA
2(n+1)

gives

S2(n) <

(
2(n + 1)

cA

)n+1 ∫ ∞

M/ log M

exp

(
−cAw

2

)
dw = 2

cA

(
2(n+1)

cA

exp( cA
2(n+1)

M
log M

)

)n+1

.

By condition (15), 2(n+1)
cA

< exp( cA
2(n+1)

M
log M

). Thus

S2(n) <
2

cA
. (16)

Combining inequalities (12) and (16) gives

S(n) = S1(n) + S2(n) < M
( n

ecA

)n + 2

cA
.

Let M = n where  > 1. As soon as n is sufficiently large conditions (13), (14), and (15) hold.
So, for sufficiently large even n,

�1/n
n �

(
6BnS(n)

)1/n
<

(
6Bn

(( n

ecA

)n + 2

cA

))1/n

<
(

12Bn
( n

ecA

)n)1/n = 121/n

(
B

ecA

)
n

<

(
2B

ecA

)
n.

Consequently

∞∑
n=0

�−1/2n
2n = ∞,

and by Carleman’s criterion (Lemma 2.7) it follows that the Hamburger moment problem
�n = ∫∞

−∞ xndF (x) is determined. �

Let {pn(x)} be the family of orthogonal polynomials obtained from the inner product in
Lemma 3.1 by orthogonalizing the set of non-negative powers of x according the Gram–Schmidt
procedure. Because �2k+1 = 0 and �2k > 0 for each k it follows that p2n+1(x) is an odd function
while p2n(x) is an even function.
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The spectrum (defined in §2) of F consists of all �k such that �k + i�k is a zero of �(1/2 + iz).
We will label the positive values in S(F ) as

a1 < a2 < a3 < · · · .

It was known, as early as Riemann [5, p. 159], that a1 ≈ 14.134. Denote the n positive zeros of
p2n(x) as

x2n,1 < x2n,2 < · · · < x2n,n.

Similarly, denote the n positive zeros of p2n+1(x) as

x2n+1,1 < x2n+1,2 < · · · < x2n+1,n.

Thus, we may write

p2n(z)

p2n(0)
=

n∏
k=1

(
1 − z2

x2
2n,k

)
and

p2n+1(z)

zp′
2n+1(0)

=
n∏

k=1

(
1 − z2

x2
2n+1,k

)
. (17)

In Lemmas 3.3 and 3.4 we will show that ak = limn→∞ xnk .

Lemma 3.3. ak < xmk < xnk when m > n. Hence, ak � limn→∞ xnk .

Proof. The spectral points of F are the numbers ±ak for k = 1, 2, 3, . . . . By Lemma 2.5 if n
is odd, the open interval (0, xn1) contains a1 because a1 is the smallest positive spectral point. If
n is even, the open interval (−xn1, xn1) contains a1. In either case, a1 < xn1. Similarly, each of
the open intervals (xn,k−1, xnk) for 2�k��n/2� contains a spectral point. This forces ak < xnk .
From the interlacing property of zeros in Lemma 2.2 it is immediate that

0 < xn+1,1 < xn,1 < · · · < xn+1,n < xn,n < xn+1,n+1 (18)

whether n is even or odd. Hence, ak < xmk < xnk for when m > n. �

Lemma 3.4. ak = limn→∞ xnk .

Proof. By Lemma 2.4 there is a subsequence of the functions Fn, defined in Eq. (6), that
converges to a distribution function 
 such that

�n =
∫ ∞

−∞
xnd
(x), n = 0, 1, 2, . . . .

In Lemma 3.2 it was established that the Hamburger moment problem

�n =
∫ ∞

−∞
xn dF (x), n = 0, 1, 2, . . .

is determined. Therefore, F and 
 are substantially equal and they have the same spectrum. Let
ak be any one of the positive spectral points of F or 
. By Lemma 2.6 every neighborhood
of ak contains a zero of pn(x) for infinitely many n. Let 	1 > 0 be small enough so that the
only spectral point of F in (a1 − 	1, a1 + 	1) is a1. By Lemma 3.3 the only root of pn(x) that
potentially could be in that neighborhood is xn1. Since infinitely many values of the bounded
decreasing sequence {xn1} lie in that neighborhood of a1, limn→∞ xn1 = a1. Suppose, by way
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of induction, that limn→∞ xnr = ar for 1�r < k. Choose 	k > 0 small enough so that the
only spectral point of F in (ak − 	k, ak + 	k) is ak . Again by Lemma 3.3 the roots xnj for j>k

cannot be in the neighborhood of ak since ak < ak+1 < xnj . By the induction hypothesis only
finitely many roots xnj with j<k can be in the neighborhood. Since the neighborhood contains
infinitely many roots the only possibility is that xnk is in the neighborhood for infinitely many n.
Thus limn→∞ xnk = ak . �

Lemma 3.5. The sequences of polynomials

p2n(z)

p2n(0)
and

p2n+1(z)

zp′
2n+1(0)

converge uniformly on compact sets to the entire function with simple real zeros corresponding
to the real parts of zeros of �(1/2 + iz). Thus, for all z ∈ C,

lim
n→∞

p2n(z)

p2n(0)
= lim

n→∞
p2n+1(z)

zp′
2n+1(0)

=
∞∏

k=1

(
1 − z2

a2
k

)
.

Proof. Let � > 0 be given. Let K be any compact subset of C. Choose R so that |z| < R for every
z ∈ K . Define MR to the be positive constant

MR =
∞∏

k=1

(
1 + R2

a2
k

)
.

Because �(1/2 + iz) is an entire function of order one [15, Theorem 2.12],
∑∞

k=1 a−2
k < ∞.

Consequently, MR is finite. For z ∈ K ,

∣∣∣∣p2n(z)

p2n(0)

∣∣∣∣ =
∣∣∣∣∣

n∏
k=1

(
1 − z2

x2
2n,k

)∣∣∣∣∣ �
n∏

k=1

(
1 + |z|2

x2
2n,k

)
�

n∏
k=1

(
1 + R2

a2
k

)
�MR.

Now choose N at least large enough so that ak > R when k > N . For n > N , define �(z) and
�(z) by

1 + �(z) =
n∏

k=N+1

(
1 − z2

x2
2n,k

)
and 1 + �(z) =

n∏
k=N+1

(
1 − z2

a2
k

)
.

Since 1 − R2/a2
k < |1 − z2/x2

2n,k| < 1 + R2/a2
k we obtain

∞∏
k=N+1

(
1 − R2/a2

k

)
< |1 + �(z)| <

∞∏
k=N+1

(
1 + R2/a2

k

)
.

Similarly,

∞∏
k=N+1

(
1 − R2/a2

k

)
< |1 + �(z)| <

∞∏
k=N+1

(
1 + R2/a2

k

)
.
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Since limN→∞
∏∞

k=N+1

(
1 − R2/a2

k

) = 1 and limN→∞
∏∞

k=N+1

(
1 − R2/a2

k

) = 1 we may
choose N large enough so that

|�(z)| <
�

MR

and |�(z)| <
�

MR

.

Choose N1 > N large enough so that, if n > N1 and z ∈ K ,∣∣∣∣∣
N∏

k=1

(
1 − z2

x2
2n,k

)
−

N∏
k=1

(
1 − z2

a2
k

)∣∣∣∣∣ < �.

Let n > N1. Then∣∣∣∣∣p2n(z)

p2n(0)
−

∞∏
k=1

(
1 − z2

a2
k

)∣∣∣∣∣ =
∣∣∣∣∣

n∏
k=1

(
1 − z2

x2
2n,k

)
−

∞∏
k=1

(
1 − z2

a2
k

)∣∣∣∣∣
=
∣∣∣∣∣(1 + �(z)

) N∏
k=1

(
1 − z2

x2
2n,k

)
− (

1 + �(z)
) N∏

k=1

(
1 − z2

a2
k

)∣∣∣∣∣
�
∣∣∣∣∣

N∏
k=1

(
1 − z2

x2
2n,k

)
−

N∏
k=1

(
1 − z2

a2
k

)∣∣∣∣∣
+|�(z)|

∣∣∣∣∣
N∏

k=1

(
1 − z2

x2
2n,k

)∣∣∣∣∣+ |�(z)|
∣∣∣∣∣

N∏
k=1

(
1 − z2

a2
k

)∣∣∣∣∣
� � + �

MR

· MR + �

MR

· MR = 3�.

This shows that p2n(z)
p2n(0)

converges to
∏∞

k=1(1 − z2/a2
k ) uniformly on compact subsets of C as n

tends to infinity. The same argument, with 2n replaced by 2n+1, shows that the sequence p2n+1(z)

zp′
2n+1(0)

converges uniformly on compact sets to the same entire function. �

By Lemma 3.5

lim
n→∞

p2n(z)

p2n(0)
= lim

n→∞
p2n+1(z)

zp′
2n+1(0)

=
∞∏

k=1

(
1 − z2

a2
k

)
= �(1/2 + iz)

�(1/2)

if and only if �(1/2 + iz) has simple real zeros. This completes the proof of Theorem 1.
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