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We attach a certain n × n matrix An to the Dirichlet series L(s) =∑∞
k=1 akk−s . We study the determinant, characteristic polynomial,

eigenvalues, and eigenvectors of these matrices. The determinant
of An can be understood as a weighted sum of the first n coeffi-
cients of the Dirichlet series L(s)−1. We give an interpretation of
the partial sum of a Dirichlet series as a product of eigenvalues.
In a special case, the determinant of An is the sum of the Möbius
function. We disprove a conjecture of Barrett and Jarvis regarding
the eigenvalues of An .
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1. Introduction

To the Dirichlet series

L(s) =
∞∑

k=1

ak

ks
,

we attach the n × n matrix

Dn =
∞∑

k=1

ak En(k),

where En(k) is the n × n matrix whose i jth entry is 1 if j = ki and 0 otherwise. For example,
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D6 =

⎛
⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 a5 a6
a1 a2 a3

a1 a2
a1

a1
a1

⎞
⎟⎟⎟⎟⎟⎠ .

Since

En(k1)En(k2) = En(k1k2)

for every k1,k2 ∈ N, formally manipulating linear combinations of En(k) is very similar to formally
manipulating Dirichlet series. However, because En(k) is the zero matrix whenever k > n, the sum
defining Dn is guaranteed to converge. Of course, the n × n matrix contains less information than the
Dirichlet series. Letting n tend to infinity produces semi-infinite matrices, the formal manipulation of
which is exactly equivalent to formally manipulating Dirichlet series.

Let Wn be the matrix whose first column is the weight vector (0, w2, w3, . . . , wn)T and whose
other entries are zeros. Define the n × n matrix An (and the special cases Bn and Cn) by

An = Wn + Dn,

Bn = Wn + Dn when ak = 1 for all k,

Cn = Wn + Dn when ak = 1 and wk = 1 for all k. (1)

For example, A6, B6, and C6 are the following three matrices:⎛
⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 a5 a6
w2 a1 a2 a3
w3 a1 a2
w4 a1
w5 a1
w6 a1

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
w2 1 1 1
w3 1 1
w4 1
w5 1
w6 1

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1
1 1 1
1 1
1 1
1 1

⎞
⎟⎟⎟⎟⎟⎠ .

We will always assume that a1 = 1 since this ensures that the Dirichlet series
∑

akk−s has a formal
inverse and since this is true for many Dirichlet series that arise in number theory. For notational
convenience, we set w1 = 1, and occasionally we will write a(i) instead of ai . Several authors have
studied the matrices Bn and Cn . In [4], it was observed that

det Bn =
n∑

k=1

wkμ(k), (2)

where μ is the Möbius μ-function. This is a special case of the slightly more general fact (see Theo-
rem 2.1 below) that

det An =
n∑

k=1

wkbk, (3)

where the numbers bk are the coefficients of the formal series

L(s)−1 =
∞∑

k=1

bk

ks
.

Thus, det An is a weighted sum of the coefficients of L(s)−1.
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To obtain (2) from (3), choose the Dirichlet series to be the Riemann zeta function ζ(s) = ∑∞
k=1 k−s

so that ak = 1 for all k. This corresponds to the case of the matrix Bn . Since ζ(s)−1 = ∑∞
k=1 μ(k)k−s ,

where μ is the Möbius μ-function, it follows that bk = μ(k). One particularly intriguing choice for wk
is wk = k−s . Then (3) results in the truncated Dirichlet series

det An =
n∑

k=1

bk

ks
.

As the asymptotic growth of sums of the type in Eq. (3) is important to analytic number theory,
representing those sums in terms of determinants becomes very interesting.

Recall that the Riemann hypothesis is equivalent to the statement

n∑
k=1

μ(k) = O
(
n1/2+ε

)
,

for every positive ε . Thus, the Riemann hypothesis is equivalent to

det Cn = O
(
n1/2+ε

)
,

for every positive ε .
In [1], Barrett, Forcade, and Pollington expressed the characteristic polynomial of Cn as

pn(x) = (x − 1)n−r−1

(
(x − 1)r+1 −

r∑
k=1

v(n,k)(x − 1)r−k

)
, (4)

where r = �log2 n� and where the coefficients v(n,k) were described in terms of directed graphs. We
will refer to the eigenvalue 1, whose multiplicity is n − r −1, as the trivial eigenvalue. The eigenvalues
λ �= 1 will be called nontrivial eigenvalues. In Theorem 3.2 we extend this result by determining
the characteristic polynomial of the more general matrix An . In [1], it was shown that the spectral
radius ρ(Cn) of Cn is asymptotic to

√
n.

Barrett and Robinson [5] determined that the sizes of the Jordan blocks of Bn corresponding to the
trivial eigenvalue 1 are

⌊
log2(n/3)

⌋ + 1,
⌊

log2(n/5)
⌋ + 1, . . . ,

⌊
log2

(
n/{n})⌋ + 1,

where {n} denotes the greatest odd integer � n. Theorem 4.1 of this paper shows that each nontrivial
eigenvalue of An is simple and expresses a basis for the one-dimensional eigenspace in terms of
a recursion involving the coefficients of pm(x) for m < n, enhancing our understanding of the Jordan
form of An . Theorem 4.2 gives a similar result for the transpose of An .

The coefficients of the characteristic polynomial of Cn are related to the Riemann zeta function as
follows: If (ζ(s) − 1)k is expressed as a Dirichlet series

∑∞
m=1

c(m,k)
ms so that

1

1 + (ζ(s) − 1)
=

∞∑
k=0

(−1)k(ζ(s) − 1
)k =

∞∑
k=0

(−1)k

( ∞∑
m=1

c(m,k)

ms

)
,

then

v(n,k) =
∑
j�n

c( j,k).
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Evaluating pn(x) at x = 0 gives the fundamental relationship

det Cn =
n∑

i=1

μ(i) =
∏

λ nontrivial

λ =
�log2 n�∑

k=0

(−1)k v(n,k),

where v(n,0) is defined to equal 1.
Barrett and Jarvis [2] showed that Cn has two large real eigenvalues λ± satisfying

λ± = ±√
n + log

√
n + γ − 1/2 + O

(
log2 n√

n

)
, (5)

and that the remaining �log2 n� − 1 small nontrivial eigenvalues satisfy

|λ| < log2−ε n

for any small positive ε and sufficiently large n. Based on numerical evidence for various values of n
as large as n = 106, they also made the following two-part conjecture:

Conjecture 1.1. (See Barrett and Jarvis [2].) The small nontrivial eigenvalues λ of Cn satisfy

(i) |λ| < 1, and
(ii) Re(λ) < 1.

The statement Re(λ) < 1 is, of course, weaker than the statement |λ| < 1.
Vaughan [6] refined the asymptotic formula (5) for the two large eigenvalues and showed, uncon-

ditionally, that the small eigenvalues satisfy

|λ| � (logn)2/5,

and, upon the Riemann hypothesis, that the small eigenvalues satisfy

|λ| � log log(2 + n). (6)

He later showed [7] that Cn has nontrivial eigenvalues arbitrarily close to 1 for sufficiently large n,
suggesting that a proof of Conjecture 1.1 would likely be quite subtle.

Investigations of the Redheffer matrix have been extended to group theory by Humphries [3] and
to partially ordered sets by Wilf [8].

In Section 5, we resolve Conjecture 1.1 by showing that both parts are false. There exist values of n
for which a small eigenvalue λ satisfies both |λ| > 1 and Re(λ) > 1. To accomplish this we computed
the characteristic polynomials for An for values of n as large as n = 236.

2. The determinant of An

We now find the determinant of An .

Theorem 2.1. Let Dn be the Dirichlet matrix associated with the formal Dirichlet series L(s) = ∑∞
k=1 akk−s

where a1 = 1, and write L(s)−1 = ∑∞
k=1 bkk−s . Let Wn be the matrix whose first column is (0, w2, . . . , wn)T

and whose other entries are zeros. Let An = Wn + Dn as in (1). Also, let Ãn = Wn + D−1
n . Then

det(An) =
n∑

k=1

wkbk and det( Ãn) =
n∑

k=1

wkak. (7)
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Corollary 2.2. The choice wk = 1 produces partial sums of coefficients of Dirichlet series:

det An =
n∑

k=1

bk and det Ãn =
n∑

k=1

ak. (8)

Corollary 2.3. The choice wk = k−s gives truncations of the Dirichlet series L(s)−1 and L(s):

det An =
n∑

k=1

bk

ks
and det Ãn =

n∑
k=1

ak

ks
. (9)

If s is a complex number at which L(s) and L(s)−1 converge,

lim
n→∞ det An = L(s)−1 and lim

n→∞ det Ãn = L(s).

So, Corollary 2.3 says that we may interpret det An and det Ãn as approximating values of Dirichlet
series. Since the determinant is the product of the eigenvalues, this relates values of Dirichlet series
with eigenvalues of matrices.

Proof of Theorem 2.1. This is essentially the same argument as the one given in Redheffer’s note [4]
where he found the determinant of Bn . Since Dn is upper triangular with diagonal entry 1, det Dn =
det D−1

n = 1. Then

det An = det D−1
n det An = det D−1

n det(Wn + Dn) = det
(

D−1
n Wn + In

)
.

The matrix D−1
n Wn has zeros in columns 2 through n, and its (1,1)-entry is

∑n
k=2 wkbk . Thus, det An

equals the (1,1)-entry of D−1
n Wn + In which is

∑n
k=1 wkbk . Replacing Dn with D−1

n in the argument
gives det Ãn = ∑n

k=1 wkak . �
3. The characteristic polynomial of An

The characteristic polynomial pn(x) = det(Inx − An) plays a significant role. Previously, pn(x) was
obtained for the special case Cn in [1] and [6]. In this section, we will determine the characteristic
polynomial of the more general matrix An . The following definition will be instrumental in describing
both the characteristic polynomial of An and its eigenvectors.

Definition. For integers n � 1 and k � 0, we define d(n,k) to be the Dirichlet series coefficients of
(L(s) − 1)k . That is,

(
L(s) − 1

)k =
( ∞∑

k=2

an

ns

)k

=
∞∑

n=1

d(n,k)

ns
. (10)

We define v(n,k) and v�(n,k) to be the weighted sums:

v(n,k) =
∑
j�n

w( j)d( j,k), and

v�(n,k) =
∑
j�n

w( j�)d( j,k). (11)
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Several cases of this definition are important to keep in mind: d(1,0) = 1 and d(n,0) = 0 for n > 1;
also, both d(n,k) and v(n,k) are zero if n < 2k since a number smaller than 2k cannot be written as
a product of k nontrivial factors.

From the definition of d(n,k),

∞∑
n=1

d(n,k)

ns
=

( ∞∑
k=2

an

ns

)( ∞∑
k=2

an

ns

)k−1

=
( ∞∑

k=2

an

ns

)( ∞∑
n=1

d(n,k − 1)

ns

)
,

which immediately gives the elementary recurrence relation:

Lemma 3.1. If k � 1, then

d(n,k) =
∑
i|n

1<i

a(i)d(n/i,k − 1) =
∑

j|n
j<n

a(n/ j)d( j,k − 1). (12)

Theorem 3.2. The characteristic polynomial pn(x) = det(xIn − An) is

pn(x) = (x − 1)n−r−1

(
(x − 1)r+1 −

r∑
k=1

v(n,k)(x − 1)r−k

)
, (13)

where r = �log2 n�. Consequently, if v(n, r) �= 0, the algebraic multiplicity of the trivial eigenvalue λ = 1 is
n − r − 1.

Proof. We will use the cofactor expansion to calculate the characteristic polynomial pn(x) =
det(xIn − An). Write Mn = xIn − An and let

Mn(i1, . . . , is | j1, . . . , jt)

denoted the matrix obtained by removing the rows indexed by i1, . . . , is and the columns indexed by
j1, . . . , jt from Mn . The cofactor expansion of the determinant along the first column is

pn(x) = (x − 1)n +
n∑

k=2

(−1)k wk det Mn(k | 1).

The matrix Mn(k | 1) is a block matrix whose upper left (k − 1) × (k − 1) block is Mk(k | 1), whose
lower left (n − k) × (k − 1) block is zero, and whose lower right (n − k) × (n − k) block is upper
triangular with diagonal entries x − 1. Thus

det Mn(k | 1) = (x − 1)n−k det Mk(k | 1),

where we understand det M1(1 | 1) to be 1, and

pn(x) = (x − 1)n +
n∑

(−1)k wk(x − 1)n−k det Mk(k | 1). (14)

k=2
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The �th entry in the last column of Mk(k | 1) is −an/� if � divides k; otherwise, it is zero. Then the
cofactor expansion of det Mk(k | 1) along the last column is

det Mk(k | 1) =
∑
�|k
�<k

(−1)k+�ak/� det Mk(�,k | 1,k).

The matrix Mk(�,k | 1,k) is also a block matrix. Since the upper left (�−1)× (�−1) block is M�(� | 1),
the lower left (k − � − 1) × (� − 1) block is zero, and the lower right (k − � − 1) × (k − � − 1) block is
upper triangular with diagonal entries x − 1,

det Mk(�,k | 1,k) = (x − 1)k−�−1 det M�(� | 1).

This shows that

det Mk(k | 1) =
∑
�|k
�<k

(−1)k+�ak/�(x − 1)k−�−1 det M�(� | 1). (15)

In other words, the quantity qk(x) = (−1)k−1 Mk(k | 1) satisfies the recurrence relation:

q1(x) = 1,

qk(x) =
∑
�|k
�<k

ak/�(x − 1)k−�−1q�(x) for k > 1. (16)

On the other hand, consider the polynomial t�(x) defined by

t�(x) =
∑
j�0

d(�, j)(x − 1)�− j−1. (17)

Then t1(x) = 1. For � > 1, the term in the sum corresponding to j = 0 is zero since d(�,0) = 0 in
that case. For k > 1, calculating the right-hand side of (16) with t�(x) in place of q�(x) and applying
Lemma 3.1 gives

∑
�|k
�<k

ak/�(x − 1)k−�−1t�(x) =
∑
�|k
�<k

∑
j�0

ak/�d(�, j)(x − 1)k− j−2

=
∑
j�0

d(k, j + 1)(x − 1)k− j−2

=
∑
j�1

d(k, j)(x − 1)k− j−1

= tk(x).

Since tk(x) and qk(x) both satisfy the same recurrence relations, they are equal. This shows that

(−1)k−1Mk(k | 1) = qk(x) = tk(x) =
∑
j�0

d(k, j)(x − 1)k− j−1.

Substituting the last expression into (14) gives
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pn(x) = (x − 1)n −
n∑

k=2

∑
j�1

wkd(k, j)(x − 1)n− j−1

= (x − 1)n −
∑
j�1

v(n, j)(x − 1)n− j−1.

Since v(n, j) = 0 for j > r = �log2(n)�, this is

pn(x) = (x − 1)n −
r∑

j=1

v(n, j)(x − 1)n− j−1

= (x − 1)n−r−1

(
(x − 1)r+1 −

r∑
j=1

v(n, j)(x − 1)r− j

)
,

which proves the theorem. �
4. The eigenvectors of An

Theorem 4.1. Let λ �= 1 be a nontrivial eigenvalue of An. Then λ is a simple eigenvalue, and a basis for the
one-dimensional eigenspace of An associated with λ is the vector

u = [
λ − 1, X2

(�n/2�), X3
(�n/3�), X4

(�n/4�), . . . , Xn
(�n/n�)]T

where

X j(q) =
∑
k�0

v j(q,k)

(λ − 1)k
= 1 + v j(q,1)

λ − 1
+ v j(q,2)

(λ − 1)2
+ v j(q,3)

(λ − 1)3
+ · · · .

Proof. For i � 2, the ith entry of Anu is

(Anu)i = wi(λ − 1) +
∑

1���n/i

a�u�i

= wi(λ − 1) +
∑

1���n/i

a� X�i
(⌊

n/(�i)
⌋)

= wi(λ − 1) +
∑

1���n/i

a�

∑
k�0

1�m�n/i

w(i�m)d(m,k)(λ − 1)−k

= wi(λ − 1) +
∑
k�0

( ∑
1���n/i

1�m�n/(�i)

a(�)w(i�m)d(m,k)

)
(λ − 1)−k

= wi(λ − 1) +
∑
k�0

( ∑
1�t�n/i

w(it)
∑
s|t

a(t/s)d(s,k)

)
(λ − 1)−k [set t = i�]

= wi(λ − 1) +
∑
k�0

∑
1�t�n/i

w(it)
(
d(t,k) + d(t,k + 1)

)
(λ − 1)−k [

by (12)
]
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=
∑
k�0

vi
(�n/i�,k

)
(λ − 1)−k + wi(λ − 1) +

∑
k�1

vi
(�n/i�,k

)
(λ − 1)−k+1

=
∑
k�0

vi
(�n/i�,k

)
(λ − 1)−k + (λ − 1)

∑
k�0

vi
(�n/i�,k

)
(λ − 1)−k

= λ
∑
k�0

vi
(�n/i�,k

)
(λ − 1)−k

= λXi
(�n/i�)

= λui .

In the calculation for (Anu)i with i � 2, the term aiu�i when � = 1 was equal to ai Xi(�n/i�), but this
term should be omitted from the case i = 1. Taking this into account and going to the second to last
step of the previous calculation gives

(Anu)1 = λX1(n) − X1(n)

= (λ − 1)

(
1 +

∑
k�1

v(n,k)(λ − 1)−k
)

= (λ − 1)
[
1 + (λ − 1)

]
by Theorem 3.2

= λ(λ − 1)

= λu1.

This shows that the vector u is a nonzero eigenvector for λ.
To see why the eigenspace of λ is one-dimensional, consider the submatrix of An − λI obtained

by deleting the first row and column. This (n − 1) × (n − 1) matrix is upper triangular with nonzero
entries on the diagonal. Hence, it is invertible implying that the rank of An − λIn is � n − 1. Since we
found a nontrivial eigenvector, the nullity is � 1. So, the nullity of An − λI must be exactly one. This
completes the proof. �
Theorem 4.2. Let λ �= 1 be a nontrivial eigenvalue of An. A basis for the one-dimensional eigenspace of AT

n
associated with λ is the vector

v = [
1, Yλ(2), Yλ(3), . . . , Yλ(n)

]T
, (18)

where

Yλ(q) =
∑
k�0

d(q,k)

(λ − 1)k
= d(q,0) + d(q,1)

λ − 1
+ d(q,2)

(λ − 1)2
+ · · · .

Interestingly, the algebraic expression for v does not explicitly rely on the symbols w2, . . . , wn in
the first column of An . However, altering w2, . . . , wn changes the possible numeric values of λ.

Proof of Theorem 4.2. For i � 2, the ith entry of AT
n v is

(
AT

n v
)

i =
∑
�|i

a(i/�)Y (�)

=
∑
k�0

∑
�|i

a(i/�)d(�,k)(λ − 1)−k
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=
∑
k�0

[
d(i,k) + d(i,k + 1)

]
(λ − 1)−k by (12)

= Y (i) + (λ − 1)
∑
k�1

d(i,k)(λ − 1)−k

= Y (i) + (λ − 1)Y (i)
[
since d(i,0) = 0

]
= λY (i).

The first entry of AT
n v is

(
AT

n

)
i =

∑
1� j�n

w j Y ( j)

=
∑
k�0

∑
1� j�n

w jd( j,k)(λ − 1)−k

=
∑
k�0

v(n,k)(λ − 1)−k

= 1 +
∑
k�1

v(n,k)(λ − 1)−k

= 1 + (λ − 1) [by Theorem 3.2]
= λv1.

This shows that v = [Y (1), . . . , Y (n)]T is a nonzero eigenvector of AT
n . The dimension of the

eigenspace is one, as explained in the proof of Theorem 4.1. �
5. Computing eigenvalues of Cn for large n

Theorem 3.2 expresses the characteristic polynomial of the matrix An in terms of the numbers
v(n,k). In this section, we will explain how to explicitly calculate the characteristic polynomial pn(x)
for large values of n for the special case Cn in which wi = ai = 1 for all i. The method given below in
Theorem 5.2 was used to find pn(x) for n as large as n = 236 in a few hours on a desktop computer.
To accomplish this, it is necessary to use a more efficient algorithm for finding the coefficients than
a brute force approach based directly on the definition of matrix Cn . Even with Theorem 3.2 we need
a better method for computing v(n,k) than the direct application of the definition of v(n,k) in (11).

Lemma 5.1. Suppose a� = w� = 1 for all �. If 1 � 2k � n, then

v(n,k) =
∑
i>1

v

(⌊
n

i

⌋
,k − 1

)
=

∑
j<n

(⌊
n

j

⌋
−

⌊
n

j + 1

⌋)
v( j,k − 1). (19)

If both ak = 1 and wk = 1 for all k, then v(n,k) represents the number of ways to form products
of k nontrivial factors whose product is � n and where order matters. In this case, v(n,k) represents
a count of lattices points in k-dimensional space:

v(n,k) = ∣∣{(�1, . . . , �k) ∈ Z
k: �1�2 · · · �k � n and �i � 2 for all i

}∣∣. (20)
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Proof. The first equality in (19) is evident from (20) by letting one component of (�1, . . . , �k), say �k ,
be the index of summation i. The second equality in (19) is obtained by re-indexing the sum over the
distinct values of j = �n/i�. For a given positive integer j,

j =
⌊

n

i

⌋
⇔ j � n

i
< j + 1 ⇔ n

j + 1
< i � n

j
.

Thus, the number of distinct i for which �n/i� = j is �n
j � − � n

j+1 �. �
The first recursion formula in (19) is computationally inefficient since there can be many distinct

values of i1 and i2 such that �n/i1� = �n/i2�. The second is inefficient since there can be many values
of j such that �n/ j� − �n/( j + 1)� is zero. The next theorem helps to remove this redundancy by
rewriting the summation to have significantly fewer terms.

Theorem 5.2. Assume a� = w� = 1 for all �. Suppose 1 � 2k � n and k � 1. Then

v(n,k) =
s∑

i=2

v

(⌊
n

i

⌋
,k − 1

)
+

�√n�∑
j=2k−1

(⌊
n

j

⌋
−

⌊
n

j + 1

⌋)
v( j,k − 1), (21)

where s = � n
�√n�+1

�.

Proof. This argument applies the hyperbola method from analytic number theory. Rewrite (19) as

v(n,k) =
∑

�n/i���√n�+1

v

(⌊
n

i

⌋
,k − 1

)
+

∑
�n/i���√n�

v

(⌊
n

i

⌋
,k − 1

)
, (22)

where the index i in each summation satisfies 2 � i � �n/2k−1�. In the first summation, since both i
and �√n� + 1 are integers,

⌊
n

i

⌋
� �√n� + 1 ⇔ n

i
� �√n� + 1 ⇔ i � n

�√n� + 1
⇔ i �

⌊
n

�√n� + 1

⌋
.

This gives the value s = �n/(�√n� + 1)� in the first summation in Eq. (21). In the second summa-
tion in (22), we re-index the sum over the distinct values of j = �n/i� � �√n�. For a given positive
integer j,

j =
⌊

n

i

⌋
⇔ j � n

i
< j + 1 ⇔ n

j + 1
< i � n

j
.

Thus, the number of distinct i for which �n/i� = j is �n
j � − � n

j+1 �, allowing the second summation
in (22) to be written as

�√n�∑
j=2k−1

(⌊
n

j

⌋
−

⌊
n

j + 1

⌋)
v( j,k − 1).

This proves (21). �
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Table 1
Values of v(n,k) for n = 106, n = 228, and n = 236.

k v(106,k) v(228,k) v(236,k)

1 999,999 268,435,455 68,719,476,735
2 11,970,035 4,714,411,991 1,587,951,104,025
3 67,120,491 39,550,266,080 17,712,699,735,807
4 233,959,922 210,866,000,001 127,006,997,038,631
5 567,345,854 801,946,179,797 657,738,684,402,616
6 1,015,020,739 2,314,766,752,399 2,620,541,404,211,325
7 1,386,286,166 5,267,935,378,357 8,354,699,452,581,663
8 1,475,169,888 9,693,670,870,002 21,888,970,237,054,221
9 1,237,295,133 14,675,212,443,928 48,028,484,118,248,949

10 822,451,796 18,500,845,515,388 89,496,511,738,284,187
11 433,656,192 19,585,798,031,078 143,118,705,146,069,804
12 180,821,164 17,506,983,509,953 197,979,547,265,239,162
13 59,146,673 13,254,336,924,806 238,336,089,820,847,725
14 14,935,574 8,508,754,910,066 250,812,663,743,567,239
15 2,829,114 4,628,591,443,629 231,467,885,026,020,936
16 383,693 2,128,656,115,076 187,727,209,728,498,411
17 34,630 824,357,770,148 133,949,812,310,943,213
18 1672 267,263,904,116 84,103,735,312,636,462
19 20 71,941,723,387 46,433,832,280,215,021
20 15,889,930,335 22,505,741,596,654,059
21 2,830,811,858 9,551,600,816,612,963
22 396,537,923 3,536,981,261,202,340
23 42,162,106 1,137,490,727,898,326
24 3,284,753 315,879,734,318,303
25 177,731 75,228,001,661,856
26 4707 15,244,074,212,812
27 55 2,604,780,031,507
28 1 371,154,513,760
29 43,388,420,848
30 4,049,932,603
31 290,175,811
32 15,487,073
33 582,143
34 9555
35 71
36 1

It is interesting to note that s in Theorem 5.2 is equal to either �√n� or �√n� − 1 according to

s =
⌊

n

�√n� + 1

⌋
=

{ �√n� if n − �√n�2 � �√n�,
�√n� − 1 if n − �√n�2 < �√n�.

By implementing the recursive formula in Theorem 5.2, we were able to calculate the character-
istic polynomial for the special case Cn for relatively large values of n, such as n = 236, within a few
hours on a desktop computer. Recall that the characteristic polynomial pn(x) of the general matrix An

was given in Theorem 3.2. The author implemented the algorithm in Theorem 5.2, using exact in-
teger arithmetic, with the Mathematica programming language. To add confidence to the validity of
the calculation, Rodney Forcade independently verified the author’s calculations of various character-
istic polynomials for large values of n with a program written in the Maple programming language.
A sample of the coefficients v(n,k) of pn(x) for n = 106, n = 228, and n = 236 is given in Table 1. Once
the characteristic polynomials were obtained, roots were computed numerically to a high degree of
precision.

A table listing the maximum absolute value and real part of small nontrivial eigenvalues of Cn for
n = 106 and n = 2r with 28 � r � 36 is given below:
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n max{|λ|} max{Re(λ)}
106 = 1,000,000 0.983108 0.983108
228 = 268,435,456 0.998885 0.998739
229 = 536,870,912 0.999120 0.998989
230 = 1,073,741,824 0.999324 0.999206
231 = 2,147,483,648 0.999501 0.999395
232 = 4,294,967,296 0.999676 0.999560
233 = 8,589,934,592 1.002646 0.999704
234 = 17,179,869,184 1.005213 0.999829
235 = 34,359,738,368 1.007423 0.999939
236 = 68,719,476,736 1.031192 1.000036

The example with n = 236 provides a counter-example to both parts of Conjecture 1.1; that is,
there exist values of n for which a small eigenvalue λ of Cn satisfies both |λ| > 1 and Re(λ) > 1.
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