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Abstract. Let Hn(z) be the function of a complex variable z defined by

Hn(z) =
∑

G(±ia1 ± · · · ± ian)eiz(±b1±···±bn)

where the summation is over all 2n possible plus and minus sign combinations, the same
sign combination being used in both the argument of G and in the exponent. The numbers
a1, a2, a3, . . . and b1, b2, b3, . . . are assumed to be positive, and G is an entire function of
genus 0 or 1 that is real on the real axis and has only real zeros. Then the function Hn(z)
has only real zeros.

1. Introduction

Let G(z) be an entire function of genus 0 or 1 that is real on the real axis and
has only real zeros. This is equivalent to saying that G(z) has a Weierstrass prod-
uct representation of the form G(z) = czqeαz

∏

(1− z/αm) ez/αm where q is a
nonnegative integer, c and α are real, and the αm are the nonzero real zeros of G.
In the case of either genus 0 or 1, the sum

∑

α−2
m is finite. Let a1, a2, a3, . . . and

b1, b2, b3, . . . be sequences of positive real numbers, and let Hn(w) be the function
of a complex variable w defined by

Hn(w) =
∑

G(±ia1 ± · · · ± ian)eiw(±b1±···±bn)

where the summation is over all 2n possible plus and minus sign combinations, the
same sign combination being used in both the argument of G and in the exponent.
For example,

H2(w) = G(−ia1 − ia2)e
iw(−b1−b2) +G(−ia1 + ia2)e

iw(−b1+b2)

+G(ia1 − ia2)e
iw(b1−b2) +G(ia1 + ia2)e

iw(b1+b2).

In this paper we prove the following:

Theorem 1 All of the zeros of Hn(w) are real.
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The proof of Theorem 1 is given in §2. An interesting corollary produces poly-
nomials with zeros on the unit circle. In the special case b1 = b2 = · · · = bn
replacing eibkw with x gives a rational function whose numerator is an even poly-
nomial. Replacing x2 in the numerator with t gives a polynomial Pn(t) of degree
n in the variable t. For example, H2(w) becomes

G(−ia1 − ia2)x
−2 +G(−ia1 + ia2) +G(ia1 − ia2) +G(ia1 + ia2)x

2

which becomes

P2(t) = G(−ia1 − ia2) +G(−ia1 + ia2)t+G(ia1 − ia2)t+G(ia1 + ia2)t
2.

Because the zeros of H2(w) are real, the zeros of P2(t) are on the unit circle.
In other words, we may define

Pn(t) =
∑

σ

G(σ · (ia1, . . . , ian))t|σ|

where the summation is over all 2n vectors σ of the form (±1, . . . ,±1), |σ| rep-
resents the number of plus signs in the vector σ, and σ · (ia1, . . . , ian) is the
ordinary dot product. Then an immediate corollary to Theorem 1 is the following
‘circle theorem’:

Theorem 2 All the zeros of the polynomial Pn(t) lie on the unit circle in the com-
plex plane.

Our main reason for studying sums of exponential functions with real zeros
has to do with the Riemann Hypothesis. For <(s) > 1, the Riemann zeta function
is defined by ζ(s) =

∑∞
n=1 n

−s. It has an analytic continuation and the function

ξ(s) =
1

2
s(s− 1)π−s/2Γ (s/2)ζ(s)

is entire. The Riemann Hypothesis states that all the zeros of ξ(s) satisfy <(s) =
1/2. A proof of the Riemann Hypothesis would be a major advance for analytic
number theory. Let Ξ(z) = ξ

(

1
2 + iz

)

. It is well known (see Titchmarsh [8] chap-
ter 10) that

Ξ(z) =

∫ ∞

−∞

Φ(x)eizxdx

where

Φ(x) =
∞
∑

n=1

(

4n4π2e9x/2 − 6n2πe5x/2
)

exp
(

−n2πe2x
)

.

In other words, the Riemann Hypothesis is true if and only if the Fourier transform
Ξ(z) has only real zeros. In the process of constructing certain Fourier transforms
with real zeros we found the result given in Theorem 1. In a different paper [2] we
apply Theorem 1 to construct Fourier transforms with real zeros.

The proof of Theorem 1 involves blending an idea of Pólya with a method
of Lee and Yang. In 1926 Pólya was attempting to understand the Riemann zeta
function. His paper includes the following observation:



Sums of exponential functions having only real zeros 3

Proposition 3 (Pólya [5], Hilfssatz II) Let a > 0 and let b be real. Assume G(z)
is an entire function of genus 0 or 1 that for real z takes real values, has at least one
real zero, and has only real zeros. Then the function G(z+ ia)eib+G(z− ia)e−ib

has only real zeros.

In 1952 Lee and Yang exhibited a model of phase transitions in lattice gases
with the property that the zeros of the partition function for the system lie on the
unit circle in the complex plane. The main mathematical result is (as re-stated in
[7, p.108]):

Proposition 4 (Lee-Yang [4], Appendix II) Let (Aij)j 6=i be a family of real num-
bers such that−1 < Aij < 1,Aij = Aji for i = 1, . . . , n; j = 1, . . . , n. We define
a polynomial Pn in n variables by

Pn(z1, . . . , zn) =
∑

S

zS





∏

i∈S

∏

j∈S′

Aij





where the summation is over all subsets S = {i1, . . . , is} of {1, . . . , n}, zS =
zi1 · · · zis and S′ = {j1, . . . , jn−s} is the complement of S in {1, . . . , n}. Then
Pn(z1, . . . , zn) = 0 and |z1| ≥ 1, . . . , |zn−1| ≥ 1 imply |zn| ≤ 1.

By setting z1, . . . , zn all equal to t one obtains the celebrated Lee-Yang Circle
Theorem from statistical mechanics:

Corollary 5 Let Pn(t) = Pn(t, . . . , t). All of the roots of Pn(t) lie on the unit
circle.

Although the exponential sums Hn(z) and the related polynomials Pn(t) do
not immediately appear to have an interpretation related to phase transitions, the
proof of the location of their zeros bears a strong resemblance the proof of Propo-
sition 4 by Lee and Yang. The main step in our argument involves proving a result
similar to Proposition 4 about multivariable polynomials (Lemma 8 below). Es-
sentially, we use the ‘decoupling method’ of Lee and Yang in a way that takes into
account Pólya’s Hilfssatz II.

Given sequences of real numbers a1, a2, . . . and b1, b2, . . . it seems natural
to iteratively apply the process of Proposition 3 (Pólya’s Hilfssatz II) to form a
sequence of functions Hk(z, w) of complex variables z and w as follows:

H0(z, w) = G(z), and

Hk(z, w) = Hk−1(z − iak, w)e−ibkw +Hk−1(z + iak, w)eibkw for k > 0.

For example,

H2(z, w) = G(z − ia1 − ia2)e
iw(−b1−b2) +G(z + ia1 − ia2)e

iw(b1−b2)

+G(z − ia1 + ia2)e
iw(−b1+b2) +G(z + ia1 + ia2)e

iw(b1+b2).

In light of Proposition 3 it is evident that the functions Hk(z, w0) for fixed real
w0, if nonzero, are of genus 0 or 1, have only real zeros, and are real for real z.
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One asks if is possible to obtain such functions as limits of this type of process.
This leads to classifying certain distribution functions F such that the integral
∫∞

−∞
G(z− is)dF (s) has only real zeros as in Cardon [1] and Cardon-Nielsen [3].

A different observation is that Hk(z, w), as a function of w, is a Fourier trans-
form relative to a discrete measure. Theorem 1 says that, for fixed real z0,Hk(z0, w)
has only real zeros. A connection between the methods of Pólya and of Lee and
Yang was noticed in a special case by Kac. See Kac’s comments in [6, p.424-426].
In the process of studying the functionHk(w) = Hk(0, w) we arrive at Theorem 1.
The proof makes essential use of Pólya’s Hilfssatz II suggesting the correctness of
Kac’s intuition.

2. Proof of Theorem 1

In this section we will prove Theorem 1. The task is to show that the zeros of
Hk(w) (= Hk(0, w)) are real. To obtain information about Hk(z, w) we consider
an associated rational function of the variables x1, . . . , xk obtained by replacing
eibjw with xj . This ‘de-coupling’ procedure was used by Lee and Yang [4]. Let

P0(z;x) = G(z), and

Pk(z;x) = Pk−1(z − iak;x)x−1
k + Pk−1(z + iak;x)xk for k > 0,

where x = (x1, . . . , xk). Note that x is a vector of variables the number of which
depends on the subscript in the expression Pk. For example,

P1(z;x1) = G(z − ia1)x
−1
1 +G(z + ia1)x1

and

P2(z;x1, x2) = G(z − ia1 − ia2)x
−1
1 x−1

2 +G(z + ia1 − ia2)x1x
−1
2

+G(z − ia1 + ia2)x
−1
1 x2 +G(z + ia1 + ia2)x1x2.

Note that Pk satisfies the fundamental relation

Pk(z; e
b1w, . . . , ebkw) = Hk(z, w).

A nonrecursive definition of Pk is

Pk(z;x1, . . . , xk) =
∑

G(z ± ia1 ± · · · ± iak)
∏

+ xj
∏

− x
−1
`

where the summation is over all 2k possible sign combinations. The expression
∏

+ xj means to take the product over those j corresponding to plus signs in the
summation of the iam. Similarly, the expression

∏

− x` means to take the product
over those ` corresponding to minus signs in the summation of the iam.

The most important step of the proof is Proposition 8 (below) in which we gain
information about the zeros of Pk(z;x1, . . . , xk). Before getting to Proposition 8
we will deal with a few special cases and also prove two technical lemmas.

Pk(z;x1, . . . , xk) can degenerate into simpler cases for certain choices of am,
bm, orG. We will dispense with three trivial cases before proceeding with the main
part of the proof. The first two trivial cases show why Theorems 1 and 2 assume
that the real numbers a1, a2, . . . and b1, b2, . . . are nonzero:
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Trivial Case 1. Pn(z;x1, . . . , xn) degenerates to a simpler case if ak = 0 for some
k. For example, if an = 0, then

Hn(z, w) = 2 cos(bnw)Hn−1(z, w)

and
Pn(z;x1, . . . , xn) = (x−1

n + xn)Pn−1(z;x1, . . . , xn−1).

The problem of studying zeros of Hn(z, w) and Pn(z;x1, . . . , xn) is reduced
to the problem of studying the zeros of Hn−1(z, w) and Pn−1(z;x1, . . . , xn−1).
Therefore we assume throughout this paper that ak > 0 for all k.

Trivial Case 2. Another case to consider is when bk = 0 for some k. For example,
suppose bn = 0. Define G̃ and H̃ by

G̃(z) = G(z − ian) +G(z + ian),

H̃0(z, w) = G̃(z),

and

H̃k(z, w) = H̃k−1(z − iak, w)e−ibkw + H̃k−1(z + iak, w)eibkw

for 0 < k < n. Then
Hn(z, w) = H̃n−1(z, w).

This formula reduces the problem to the case of studying sums of exponential
functions with fewer terms. To avoid this reduction we assume bk > 0 for all k.

A third trivial case results from an especially simple choice for G:

Trivial Case 3. If G(z) is an entire function of genus 0 or 1 that is real on the real
axis and has no zeros at all, then G(z) is of the form ceαz where c is a nonzero
real number and α is real. Then

Hn(z, w) = ceαz
n
∏

k=1

2 cos(bkw + αak)

and

Pn(z;x1, . . . , xn) = ceαz
n
∏

k=1

(xke
iαak + x−1

k e−iαak).

Then, Hn(0, w) has only real zeros. This simple case is included in the statement
of Theorems 1 and 2; however, it is excluded from the statement of Proposition 8
(below) because the proposition assumes that G(z) has at least n ≥ 1 real zeros.

The following two technical lemmas are required later and describe the number
of zeros of G(z − ia)e−ib +G(z + ia)eib.
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Lemma 6 Let G(z) be an entire function of genus 0 or 1 that is real for real z,
has only real zeros, and has at least n ≥ 1 zeros (counting multiplicity). Let a > 0
and let b be real. Then

G(z − ia)e−ib +G(z + ia)eib

is also a function of genus 0 or 1 that is real on the real axis, has only real zeros,
and has at least n− 1 zeros.

Proof. Assume G has n ≥ 1 zeros. Then G(z) is of the form

G(z) = eαz(cnz
n + cn−1z

n−1 + · · ·+ c1z + c0)

where cn 6= 0. Let

H(z) = G(z − ia)e−ib +G(z + ia)eib.

Then by expanding and collecting powers of z we obtain

H(z) = eαz(dnz
n + dn−1z

n−1 + · · ·+ d1z + d0)

where

dn = 2cn cos(b+ αa) and dn−1 = 2cn−1 cos(b+ αa)− 2ancn sin(b+ αa).

If cos(b + αa) 6= 0, then dn 6= 0 and H(z) has n zeros counting multiplicities. If
cos(b+ αa) = 0, then dn = 0 but dn−1 6= 0 in which case H(z) has n− 1 zeros
counting multiplicities. ut

Lemma 7 Let G(z) be an entire function of genus 0 or 1 that is real for real z,
has only real zeros, and has infinitely many zeros. Let a > 0 and let b be real. Then

G(z − ia)e−ib +G(z + ia)eib

is also a function of genus 0 or 1 that is real on the real axis, has only real zeros,
and has infinitely many zeros.

Proof. We begin with a simple observation about real entire functions of genus 0
or 1. Let φ be such a function. Then φ may be represented as

φ(z) = czmeαz
∏

k

(1− z/αk)e
z/αk

where c, α, and αk are real and m is a nonnegative integer. For any real T ,

|φ(iT )|2 = T 2m
∏

k

(1 + T 2/α2
k).

Thus φ(z) has infinitely many zeros if and only if |φ(iT )|2 grows more rapidly
than any power of T .

Now let
H(z) = G(z − ia)e−ib +G(z + ia)eib.
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By making a change of variable, if necessary, there is no loss of generality in
assuming that G is of the form

G(z) = eαz
∞
∏

k=1

(1− z/αk)e
z/αk

where the αk are the real zeros of G. Let

g(z) =

∞
∏

k=1

(1− z2/α2
k).

For real T , g(iT ) = |G(iT )|2. Since g(z) satisfies the conditions of Proposi-
tion 3, the derivative g′(z) = limh→0

g(z+ih)−g(z−ih)
2ih also satisfies the conditions

of Proposition 3. Thus, g′(z) is of the form

g′(z) = z
∞
∏

k=1

(1− z2/β2
k).

where the βk are real and
∑

β−2
k <∞.

By the observation at the beginning of the proof, sinceG(z) has infinitely many
zeros, g(iT ) = |G(iT )|2 grows more rapidly than any power of T . Similarly, for
fixed real a, both g(iT + ia) = |G(iT + ia)|2 and g(iT − ia) = |G(iT − ia)|2

grow more rapidly than any power of T . By showing that the difference

g(iT + ia)− g(iT − ia) = |G(iT + ia)|2 − |G(iT − ia)|2

grows more rapidly than any power of T we may conclude that |H(iT )|2 also
grows rapidly and hence that H(z) has infinitely many zeros.

By the mean value theorem of calculus there exists a real number aT depending
on T in the interval (−a, a) such that

g(iT + ia)− g(iT − ia) = 2aig′(iT + iaT ).

Since g(iT ) and ig′(iT ) are increasing functions of positive T ,

g(iT + ia)− g(iT − ia) ≥ 2aig′(iT − ia)

for all T ≥ a. But the right hand side grows more rapidly than any power of T .
Therefore, |G(iT + ia)|2 grows sufficiently more rapidly than |G(iT − ia)|2 to
conclude that |H(iT )|2 = |G(iT + ia)eib+G(iT − ia)e−ib|2 grows more rapidly
than any polynomial as T becomes large. Thus, H(z) has infinitely many zeros.
ut

The following proposition is similar to the result of Lee and Yang mentioned
in §1 (see Proposition 4).

Proposition 8 Let G(z) be an entire function of genus 0 or 1 that has only real
zeros, has at least n ≥ 1 real zeros (counting multiplicity), and is real for real z.
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(i) Suppose Pn(iA;x1, . . . , xn) = 0 and A > 0, a1 > 0, . . . , an > 0, |x1| ≥ 1,
. . . , |xn−1| ≥ 1. Then |xn| < 1.

(ii) Suppose Pn(−iA;x1, . . . , xn) = 0 and A > 0, a1 > 0, . . . , an > 0, |x1| ≤ 1,
. . . , |xn−1| ≤ 1. Then |xn| > 1.

Proof. We will prove part (i) by induction on n. The proof of part (ii) is identical
except for reversing some inequalities. In the case n = 1, suppose

0 = P1(iA;x1) = G(iA− ia1)x
−1
1 +G(iA+ ia1)x1.

The hypotheses on G imply that for real c, d with 0 ≤ c < d, |G(ic)| < |G(id)|.

Then |A− a1| < |A+ a1| implies |x1| =
∣

∣

∣

G(iA−ia1)
G(iA+ia1)

∣

∣

∣

1/2

< 1.
Now assume n ≥ 2 and that the theorem holds for Pk with 1 ≤ k < n. If, by

way of contradiction, the theorem is false for Pn, there exists a solution x1, . . . , xn
of the equation 0 = Pn(iA;x1, . . . , xn) such that |xk| ≥ 1 for 1 ≤ k ≤ n. We
will show that this leads to the existence of another solution w1, . . . , wn such that

|w1| = 1, . . . , |wn−1| = 1, |wn| ≥ 1.

From the definition of Pn we have

0 = Pn(iA;x1, . . . , xn)

= Pn−2(iA−ian−1−ian;x)x−1
n−1x

−1
n +Pn−2(iA−ian−1+ian;x)x−1

n−1xn

+Pn−2(iA+ian−1−ian;x)xn−1x
−1
n +Pn−2(iA+ian−1+ian;x)xn−1xn.

By the induction hypothesis Pn−2(iA+ ian−1 + ian;x1, . . . , xn−2) 6= 0. The last
equation shows that x2

n−1 and x2
n are related through the fractional linear transfor-

mation:

x2
n−1 = −

Pn−2(iA− ian−1 − ian;x) + Pn−2(iA− ian−1 + ian;x)x2
n

Pn−2(iA+ ian−1 − ian;x) + Pn−2(iA+ ian−1 + ian;x)x2
n

.

As x2
n tends to∞, x2

n−1 tends to the value x′2n−1 where

x′
2
n−1 = −

Pn−2(iA− ian−1 + ian;x)

Pn−2(iA+ ian−1 + ian;x)
.

For the value x′2n−1 we have

0 = Pn−2(iA− ian−1 + ian;x) + Pn−2(iA+ ian−1 + ian;x)x′
2
n−1

0 = x′n−1Pn−1(iA+ ian;x1, . . . , xn−2, x
′
n−1).

Since |x1| ≥ 1, . . . , |xn−2| ≥ 1, the induction hypothesis implies |x′n−1| < 1.
Therefore, by continuity, there exists a solution x1, . . . , xn−2, wn−1, x̃n such that

|x1| ≥ 1, . . . , |xn−2| ≥ 1, |wn−1| = 1, |x̃n| ≥ |xn| ≥ 1.
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Repeating this argument with the indices 1, . . . , n− 2 in place of n− 1 results in
a solution w1, . . . , wn such that

|w1| = 1, . . . , |wn−1| = 1, |wn| ≥ |xn| ≥ 1.

Then

0 = Pn(iA;w1, . . . , wn)

0 = Pn−1(iA− ian;w1, . . . , wn−1)w
−1
n + Pn−1(iA+ ian;w1, . . . , wn−1)wn.

Let fk(z) for 1 ≤ k ≤ n− 1 be defined recursively by

f1(z) = G(z − ia1)w
−1
1 +G(z + ia1)w1,

fk(z) = fk−1(z − iak)w
−1
k + fk−1(z + iak)wk.

Note that

fn−1(iA− ian) = Pn−1(iA− ian;w1, . . . , wn−1), and
fn−1(iA+ ian) = Pn−1(iA+ ian;w1, . . . , wn−1).

By Lemmas 6 and 7, fk(z) for 1 ≤ k ≤ n − 1 is a function of genus 0 or 1
that is real for real z and has only real zeros and has at least one real zero. Then
|A− an| < |A+ an| implies |fn−1(iA− ian)| < |fn−1(iA+ ian)| giving

|wn|
2 =

∣

∣

∣

∣

fn−1(iA− ian)

fn−1(iA+ ian)

∣

∣

∣

∣

< 1

which contradicts the fact that |wn| ≥ |xn| ≥ 1. Therefore, the assumption that
|xn| ≥ 1 is false. Hence, |xn| < 1. ut

Corollary 9 Let G(z) be an entire function of genus 0 or 1 that has only real
zeros, has at least n ≥ 1 real zeros (counting multiplicity), and is real for real z.
Suppose A > 0, a1 > 0, . . . , an > 0, b1 > 0, . . . , bn > 0. Let =(w) denote the
imaginary part of w.

(i) If Hn(iA,w) = 0, then =(w) > 0.
(ii) If Hn(−iA,w) = 0, then =(w) < 0.

(iii) If Hn(0, w) = 0, then w is real.

Proof. Set xk = eibkw. By Proposition 8 if |xk| = |eibkw| ≥ 1 for each k, then
Hn(iA,w) 6= 0. So, Hn(iA,w) = 0 implies |xk| = |eibkw| < 1 for some k which
means that =(w) > 0. This proves (i). The proof of part (ii) is similar.

By part (i), since limA→0+ Hn(iA,w) = Hn(0, w) is uniform on compact
sets, the zeros ofHn(0, w) must have=(w) ≥ 0. Similarly, limA→0+ Hn(−iA,w) =
Hn(0, w) so that the roots satisfy =(w) ≤ 0. But then =(w) = 0 and we conclude
that Hn(0, w) has only real roots. This proves (iii). ut

Recalling that Hn(w) = Hn(0, w) and by forming the associated polynomial
Pn(t) we obtain the following special cases of Theorems 1 and 2 as immediate
consequences of Corollary 9.
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Proposition 10 Let G(z) be an entire function of genus 0 or 1 that has only real
zeros, has at least n ≥ 1 real zeros (counting multiplicity), and is real for real z.
Then
(i) all the zeros of the exponential sum Hn(w) are real, and

(ii) all the zeros of the polynomial Pn(t) lie on the unit circle in the complex plane.

Now we wish to remove the artificial restriction that G(z) must have at least
n ≥ 1 zeros in the previous proposition. The case not covered is when G(z) is of
the form

G(z) = czqeαz
k
∏

m=1

(1− z/αm)

where q is a nonnegative integer, c and α are real, the αm are the nonzero real
zeros of G, and 0 ≤ k < n. For positive N let

GN (z) = (1− z/N)
n−k

· czqeαz
k
∏

m=1

(1− z/αm) .

Then GN (z) has n real roots. Let HN,n(z) be the exponential sum formed using
GN (z). That is,

HN,n(w) =
∑

GN (±ia1 ± · · · ± ian)eiw(±b1±···±bn)

where the summation is over all 2n possible plus and minus sign combinations, the
same sign combination being used in both the argument of G and in the exponent.
By Proposition 10, HN,n(w) has only real roots.

Since limN→∞HN,n(w) = Hn(w) and the convergence is uniform on com-
pact sets, the zeros of Hn(w) are real because they are limit points of the zeros of
the HN,n(w). This completes the proof of Theorem 1.

Acknowledgment. I wish to thank the referee for carefully reading this paper and
suggesting a number of improvements.
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