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Abstract. Let G(z) be an entire function of order less than 2 that

is real for real z with only real zeros. Then we classify certain

distribution functions F such that the convolution (G ∗ dF )(z) =
∫∞
−∞

G(z − is) dF (s) of G with the measure dF has only real zeros

all of which are simple. This generalizes a method used by Pólya to

study the Riemann zeta function.

1. Introduction

In this paper we continue the investigation [Car99] of the first author on
the effect of certain operators on entire functions having all of their zeros
on a line. The main result of this paper is the following theorem:

Theorem 1. Suppose G is an entire function of order < 2 that is real on

the real axis and has only real zeros. Let {ai} be a nonincreasing sequence

of positive real numbers, let {Xi} be the sequence of independent random

variables such that Xi takes values ±1 with equal probability, and let Fn
be the distribution function of the normalized sum Yn = (a1X1 + · · · +
anXn)/sn where s2n = a2

1 + · · ·+ a2
n. The functions Fn converge pointwise

to a continuous distribution F = limn→∞ Fn. Define H by the integral

H(z) = (G ∗ dF )(z) =

∫ ∞

−∞
G(z − is) dF (s).

Then H is an entire function of order < 2 that is real on the real axis. If H
is not identically zero, then H has only real zeros. Furthermore, the zeros

of H are simple.

This theorem is stated in [Car99] without the simplicity condition. The
new result in this paper is that the zeros are also simple. The proof of
Theorem 1 is given in §3. Several examples and comments are given in §4.
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Theorem 1 generalizes a fact used by Pólya in an attempt to understand
the Riemann Hypothesis. Let ξ(s) = 1

2s(s − 1)π−s/2Γ(s/2)ζ(s) where,
for <(s) > 1, the Riemann zeta function ζ(s) is defined by

∑∞
n=1 n

−s.
The function ξ(s) extends to an entire function and satisfies the functional
equation ξ(s) = ξ(1 − s). Riemann conjectured [Rie59] that the zeros of
ξ(s) lie on the line in the complex plane with real part 1/2. Among the
reasons for the intense interest in the Riemann Hypothesis is that its truth
would give a much better error term in the Prime Number Theorem than
is currently known to hold. The validity of the Riemann Hypothesis is
equivalent to

π(x) = Li(x) +O(
√
x log x)

where Li(x) is the principal value integral
∫ x

0
dt/ log(t) and π(x) is the

number of primes up to size x. The reader is referred to the texts [Edw74],
[Ivi85], [Pat88], [Tit86] for basic theory of the Riemann zeta function.

In 1926 Pólya [Pól26] approximated the first term in a rapidly converging
series for the function ξ(s) obtaining

ξ( 1
2 + it) ≈ ξ∗( 1

2 + it) = 4π2
(

Kit/2+9/4(2π) +Kit/2−9/4(2π)
)

where Kz(u) =
∫∞
0

exp(−u cosh(w)) cosh(zw)dw is the K-bessel function.
He showed that all of the zeros of Kit/2(2π) are real. By applying Propo-
sition 2 (stated below) with a = 9/2 and b = 0 he showed that the ‘fake’
zeta function ξ∗(s) has zeros only on the line <(s) = 1/2. Additionally,
let N(T ) be the number of zeros of the ξ(s) in the strip 0 < <(s) < 1 and
0 < =(s) < T and let N∗(T ) be the number of zeros of ξ∗(s) in the same
region. Then N(T ) ∼ N∗(T ). Furthermore, the zeros of ξ∗(s) are simple
in agreement with empirical evidence for the zeros of ξ(s). This tantalizing
result has been extended in [Pól27] and [Hej90].

Theorem 1 generalizes the following observation by Pólya which was
needed in his analysis of the fake zeta function ξ∗(s).

Proposition 2 (Pólya [Pól26], Hilfssatz II). Let a be a positive constant,

let b be real, and let G(z) be an entire function of genus 0 or 1 that for

real z takes real values, has at least one real zero, and has only real zeros.

Then the function

eibG(z + ia) + e−ibG(z − ia)

has only real zeros.

For completeness we include Pólya’s short proof.

Proof. By hypothesis G has a Weierstrass product of the form

G(z) = czqeαz
∏

(1− z/αn) e
z/αn
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where q is a nonnegative integer, c and α are real, and the αn are the
nonzero real zeros of G. Suppose z = x+ iy is a zero of

eibG(z + ia) + e−ibG(z − ia).

Then

|G(z + ia)| = |G(z − ia)|
and

1 =

∣

∣

∣

∣

G(z − ia)

G(z + ia)

∣

∣

∣

∣

2

=

(

x2 + (y − a)2

x2 + (y + a)2

)q
∏ (x− αn)

2 + (y − a)2

(x− αn)2 + (y + a)2
.

If y > 0 then the right hand side of the last expression is < 1. If y < 0
then the right hand side of the last expression is > 1. Both of these cases
are impossible. Hence, y = 0 and eibG(z+ ia)+e−ibG(z− ia) has only real
zeros. ¤

2. Important Notation and Preliminaries

The Laguerre-Pólya class LP of functions consists of the entire functions
with a Weierstrass factorization of the form

azqeαz−βz
2
∏

(1− z/αn)e
z/αn

where a, α, β are real, β ≥ 0, q is a nonnegative integer, and the αn are
nonzero real numbers such that

∑∞
n=1 α

−2
n <∞. We will be most interested

in the subset LP∗ of the Laguerre-Pólya class consisting of all elements of
LP of order < 2. For functions in LP∗, β is necessarily zero.

We will consider the following types of random variables and their dis-
tribution functions: Let {ai} be a nonincreasing sequence of positive real
numbers. Let {Xi} be a sequence of independent random variables such
that Xi takes values ±1 with equal probability. Let Yn be the sum

Yn =
a1X1 + · · ·+ anXn

sn

where s2n = a2
1 + · · · + a2

n. Fn will denote the distribution function of Yn.
Iteration of the formula in Proposition 2 with the values a1/sn, . . . , an/sn
in place of the constant a and with b = 0 results in an expression of the
type

Hn(z) = 2−n
∑

G
(

z − i(±a1 ± a2 · · · ± an)/sn
)

,

where the sum is over all possible sign combinations. This may be written
as the Riemann-Stieltjes integral

Hn(z) = (G ∗ dFn)(s) =
∫ ∞

−∞
G(z − is)dFn(s)
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using the measure determined by Fn. This is a convolution of G with the
measure dFn(s) along the imaginary axis. The sequence Fn converges to a
limiting distribution as described in the following lemma:

Lemma 1 ([Car99]). The sequence Fn converges pointwise to a continuous

distribution function F . If the sequence sn is unbounded, F is a normal

distribution. If the sequence sn is bounded, F is not a normal distribution.

Although we have normalized the random variables to have variance
σ2 = 1, by simply rescaling, we may suppose the variance σ2 takes any
positive value. If F is a normal distribution, we will sometimes write F =
Nσ2 to make the dependence on the variance explicit. Then

F (s) = Nσ2(s) =

∫ x

−∞
dNσ2(x) =

∫ s

−∞

e−x
2/(2σ2)

√
2π σ

dx.

3. Proof of Theorem 1

In this section G will always be a function in LP∗ and F will always
be the limit limn→∞ Fn described in §2. There are two main parts of the
proof of Theorem 1. First, it must be shown that the zeros of H(z) =
∫∞
−∞G(z − is)dF (s) are real. We state this as

Proposition 3. For G ∈ LP∗, the function

H(z) = (G ∗ dF )(z) =

∫ ∞

−∞
G(z − is) dF (s)

is also in LP∗.

Proof. Full details of this argument are carried out in [Car99]. The basic
strategy is to observe that Proposition 2 may be applied repeatedly any
finite number of times. That is, if Hn(z) =

∫∞
−∞G(z − is)dFn(s), then

Hn(z) ∈ LP∗. Next it is shown that the limit limn→∞Hn(z) = H(z) is
uniform on compact sets. By Hurwitz’s Theorem the zeros of H(z) are
limit points of the zeros of Hn(z) which are real. ¤

We now give the second part of the proof of Theorem 1 which will show
that the zeros of H(z) =

∫∞
−∞G(z− is)dF (s) are simple. The proof will be

broken up into a sequence of lemmas. Lemmas 2 through 4 deal with the
case

∑∞
i=1 a

2
i <∞. Lemmas 5 through 9 deal with the case

∑∞
i=1 a

2
i =∞.

Lemma 2. If G ∈ LP∗, then G′ ∈ LP∗.

Proof. G′ has order < 2 because differentiation does not increase the order.
Since G(z) is real for real z, so is G′(z). By Proposition 2, the difference
quotient

G(z + ia)−G(z − ia)

2ia
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has only real zeros. The limit as a → 0 is uniform for z in compact sets.
So, by Hurwitz’s Theorem, G′ has only real zeros. Thus, G′ ∈ LP∗. ¤

Lemma 3. Let G ∈ LP∗ and let a > 0. If

G(z + ia) +G(z − ia)

is not identically zero, then its zeros are simple.

Proof. Suppose, by way of contradiction, that G(z + ia) +G(z − ia) has a
non-simple zero which, we may suppose, occurs at z = 0. After multiplying
G by an appropriate constant if necessary, we may write

(1) G(z + ia) +G(z − ia) = zn(1 + f(z))

where n ≥ 2, f is entire, and f(0) = 0. Assume z is bounded to be inside
of a disk for radius R > 0 about the origin. We will perturb a by real ε
where 0 < |ε| < a.

G(z + i(a+ ε)) +G(z − i(a+ ε))

= G(z + ia) +G(z − ia) +
(

G′(z + ia)−G′(z − ia)
)

(iε) +O(ε2)

= zn(1 + f(z)) +
(

G′(ia)−G′(−ia) +O(z)
)

(iε) +O(ε2)

= zn +
(

G′(ia)−G′(−ia)
)

(iε) +O(zn+1) +O(zε) +O(ε2).

Evaluating the derivative of equation (1) at z = 0 gives G′(ia) = −G′(−ia).
By Lemma 2, G′(ia) is not zero. Then

G(z + i(a+ ε)) +G(z − i(a+ ε))

= zn + 2iG′(ia)ε+O(zn+1) +O(zε) +O(ε2).

The last expression will have roots near the nth roots of −2iG′(ia)ε pro-
vided that ε is small enough. We will prove this with an application of
Rouché’s Theorem. Write A = −2iG′(ia) and restrict z so that

|z| < 2|Aε|1/n.

Then

G(z + i(a+ ε)) +G(z − i(a+ ε)) = zn −Aε+O(ε1+1/n).

Set g(z) equal to the last expression and let h(z) = zn−Aε. Let α = (Aε)1/n

denote one of the non-real n roots of h(z). Such a choice always exists if
n ≥ 3. If n = 2, we can choose the sign of ε to guarantee that h(z) has
non-real roots. Let β be a real number such that 1 < β < 1 + 1/n, and
let γ denote the path circling α parametrized by z = (Aε + eiθ|ε|β)1/n for
0 ≤ θ ≤ 2π and for the appropriate nth root. When ε is sufficiently small
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this path does not include any other roots of h(z) or any points on the real
line. For z ∈ γ,

|g(z)− h(z)| = O(ε1+1/n) and |h(z)| = |ε|β .

Then by letting ε be sufficiently small we obtain

|g(z)− h(z)| < |h(z)|

for all z ∈ γ. The path γ encloses a single non-real root of h(z). By
Rouché’s Theorem,

g(z) = G(z + i(a+ ε)) +G(z − i(a+ ε))

also has a non-real root inside the path γ. However, Proposition 2 says that
the zeros of G(z + i(a + ε)) +G(z − i(a + ε)) are real. This contradiction
shows that all the zeros of G(z + ia) +G(z − ia) are simple. ¤

Now we can prove one case of Theorem 1 in the next lemma. We continue
to use the notation described in §2.

Lemma 4. Suppose
∑∞

i=1 a
2
i <∞ and G ∈ LP∗. If

H(z) =

∫ ∞

−∞
G(z − is)dF (s)

is not identically zero, then the zeros of H(z) are real and simple.

Proof. F is the distribution function for the random variable

Y =
1

σ
(a1X1 + a2X2 + a3X3 + · · · )

where σ2 =
∑∞

i=1 a
2
i . Let F ′ denote the distribution function for the ran-

dom variable

Y ′ =
1

σ
(a2X2 + a3X3 + · · · ).

By Proposition 3, the function

K(z) =

∫ ∞

−∞
G(z − is)dF ′(s)

is in LP∗. Then

H(z) =

∫ ∞

−∞
G(z − is)dF (s) =

1

2

(

K(z − i(a1/σ)) +K(z + i(a1/σ))
)

.

If H is not identically zero, Proposition 2 and Lemma 3 show that H(z)
has simple, real zeros. ¤
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We now turn our attention to the proof of Theorem 1 when s2
n =

∑n
i=1 a

2
i

is unbounded. In this case, as mentioned in Lemma 1, F = N1 is the normal
distribution with variance 1. We will prove this case in a way similar to the
proof of Lemma 3 by considering convolution of G with the distribution
N1−ε2 for small ε. The expression

∫∞
−∞G(z − is)dN1−ε2(s) must have real

zeros by Proposition 3. However, assuming that
∫∞
−∞G(z − is)dN1(s) has

a multiple zero will cause
∫∞
−∞G(z − is)dN1−ε2(s) to have a nonreal zero

which is a contradiction. Thus, the zeros of
∫∞
−∞G(z−is)dN1(s) are simple.

The remaining lemmas will make this argument precise. Lemmas 5 through
8 highlight several basic, but useful, observations. Lemma 9 finishes the
proof of Theorem 1.

Lemma 5. For G ∈ LP∗, (G ∗Nα2) ∗Nβ2 = G ∗Nα2+β2 .

Proof. This results from the observation that the sum of a normal random
variable with variance α2 with another normal random variable of variance
β2 is a normal random variable of variance α2 + β2. ¤

The next lemma shows that the effect of convolution with a normal
distribution can be undone.

Lemma 6. For G ∈ LP∗, if

H(z) =

∫ ∞

−∞
G(z − is)dNσ2(s),

then

G(z) =

∫ ∞

−∞
H(z − s)dNσ2(s).

Notice that the second integral is a convolution along the real axis in-
stead of the imaginary axis.

Proof. This is a standard exercise in integration using the mean value prop-
erty for analytic functions. ¤

An immediate corollary of the previous two lemmas is the following:

Lemma 7. Assume G ∈ LP∗ and let 0 < ε < σ. Let

H(z) =

∫ ∞

−∞
G(z − is)dNσ2(s).

Then
∫ ∞

−∞
G(z − is)dNσ2−ε2(s) =

∫ ∞

−∞
H(z − s)dNε2(s).
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Proof. By Lemma 5,

H = G ∗ dNσ2 = G ∗ (dNσ2−ε2 ∗ dNε2) = (G ∗ dNσ2−ε2) ∗ dNε2 .

Then apply Lemma 6. ¤

We will need to understand the convolution of the function zn against
the normal distribution. Define the polynomial pn,σ(z) for σ > 0 by

pn,σ(z) =

∫ ∞

−∞
(z − s)ndNσ2(s) =

∫ ∞

−∞
(z − s)n

e−s
2/(2σ2)

√
2πσ

ds.

Also we will write

Pn(z) = pn,1(z).

These polynomials are, in fact, expressible in terms of the Hermite poly-
nomial of degree n. The nth Hermite polynomial hn(z) may be defined
(see [Sze75]) as

hn(z) = (−1)nez2 dn

dzn

(

e−z
2
)

.

Then

pn,σ(z) =
(

σ
i
√

2

)n

hn

(

i
σ
√

2
z
)

.

From the classical theory of orthogonal polynomials it is well known that
the roots of Hermite polynomials are real and simple; therefore, the roots
of pn,σ(z) are imaginary and simple. Our proof does not rely on these
known facts about Hermite polynomials. Instead, we independently derive
any needed facts about the zeros of these polynomials.

Lemma 8.

(a) If n is even, pn,σ(z) = pn,σ(−z). If n is odd, pn,σ(z) = −pn,σ(−z).
(b) All roots of pn,σ(z) are of the form αi for α ∈ R.

(c) For n ≥ 2, pn,σ(z) has a root of the form αi where α > 0.
(d) pn,σ(z) = σnPn(z/σ).

Proof. Parts (a) and (d) are immediate from the definitions of pn,σ(z) and
Pn(z). Proposition 3 is stated for convolutions along the imaginary axis.
However, after changing variables, the proposition applies to functions
whose zeros are on the imaginary line and the convolution is performed
along the real axis. Therefore, pn,σ(z) has only imaginary zeros. This
proves (b). For part (c) we notice that pn,σ(z) is an nth degree polynomial
that is not a constant times zn. Thus it has a root different different from
zero. By (b) this root is of the form αi for some real α 6= 0. By (a) both
αi and −αi are roots. So, we may suppose α > 0. ¤

We are finally ready to complete the proof of Theorem 1.
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Lemma 9. Suppose
∑∞

i=1 a
2
i =∞ and G ∈ LP∗. If

H(z) =

∫ ∞

−∞
G(z − is)dF (s)

is not identically zero, then the zeros of H(z) are real and simple.

Proof. Suppose, by way of contradiction, that

H(z) = (G ∗ dN1)(z) =

∫ ∞

−∞
G(z − is)dN1(s)

has a real zero that is not simple. Without loss of generality we may
suppose that this zero occurs at z = 0 and that

H(z) = zn + f(z)

where n ≥ 2 and f vanishes to order n+ 1 at z = 0. We now perturb the
variance by ε. For 0 < ε < 1, let

K(z) = (G ∗N1−ε2)(z).

By Proposition 3 the zeros of K(z) are real. Using Lemma 7 we may also
calculate K(z) as

K(z) =

∫ ∞

−∞
H(z − s)dNε2(s)

= εnPn(z/ε) +

∫ ∞

−∞
f(z − s)dNε2(s)

We will apply Rouché’s Theorem to the pair of functions K(z) and
εnPn(z/ε). Let αi denote the root of Pn(z) with largest positive α. Such a
root exists by Lemma 8. Choose γ to be a circular path centered at αi with
small enough radius so that γ does not contain any other root of Pn(z) or
any points on the real axis. Then there exist positive κ1 and κ2 such that

κ1 < |Pn(z)| < κ2

for all z ∈ γ. Let εγ denote the path obtained from γ by multiplying the
points of γ by ε. The path εγ encircles the root εαi of Pn(z/ε) and contains
no other roots of Pn(z/ε) or any points on the real axis. Then

εnκ1 < |εnPn(z/ε)| < εnκ2

for all z ∈ εγ. On the other hand, for z ∈ εγ,

|K(z)− εnP (z/ε)| =
∣

∣

∣

∣

∫ ∞

−∞
f(z − s)dNε2(s)

∣

∣

∣

∣

= O(εn+1)

since f(z) = O(zn+1). Therefore, by taking ε to be sufficiently small the
inequality

|K(z)− εnP (z/ε)| < |εnP (z/ε)|
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is true on the path εγ. Rouché’s Theorem implies that K(z) has a nonreal
root contained inside the path εγ. This contradicts the fact that K(z)
has only real roots. Therefore, we conclude that the roots of H(z) =
∫∞
−∞G(z − is)dN1(s) are simple and real. ¤

This completes the proof of Theorem 1.

4. Examples and Questions

1. We may normalize the random variables Yn in Theorem 1 to have vari-
ance σ2 instead of 1. Let Fσ2 denote the resulting limit distribution and
write F = F1. Suppose G ∈ LP∗. By letting σ vary from 0 to 1 we deform
the function G which has real zeros to the function

H(z) =

∫ ∞

−∞
G(z − is)dF (s)

which has simple, real zeros. This shows that the convolution causes zeros
to repel.

2. Can the function
Ξ(t) = ξ(1/2 + it)

where

ξ(s) =
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s)

be realized as a convolution

Ξ(t) = (G ∗ dF )(t)

for some appropriate choice of G as in Theorem 1? This would prove the
Riemann Hypothesis. Pólya’s “fake” zeta function ξ∗( 1

2 + it) is a con-
volution of this type which is why we have generalized his technique of
Proposition 2 in this paper. Pólya, however, did not claim that his method
was likely to lead to a proof of the Riemann Hypothesis.

3. Let G(z) = zn. Proposition 2 implies that the zeros of 1
2

(

G(z + ia) +

G(z − ia)
)

are real, and Lemma 3 implies that the zeros are simple. This
polynomial can be explicitly factored as

1

2

(

G(z + ia) +G(z − ia)
)

=

n−1
∏

k=0

(

z − a cot

(

(2k + 1)π

2n

))

.

4. Let G(z) be either sin(z) or cos(z). Then

1

2

(

G(z + ia) +G(z − ia)
)

= cosh(a)G(z).

For a distribution F , as in Theorem 1,

(G ∗ dF )(z) = λG(z)
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where λ =
∫∞
−∞ cosh(s)dF (s). Thus, the sine and cosine functions are

eigenfunctions of convolution with the measure dF . This is not surprising
in light of the first example which shows that convolution causes zeros to
repel. Since the zeros of the sine and cosine are evenly spaced the repulsion
of zeros does not alter the location of the zeros.

5. Let

Yn =
X1 +X2 + · · ·+Xn√

2n
were Xi = ±1. The distribution function for Yn converges to the normal
distribution with variance 1/2. That is,

F (s) =
1√
π

∫ s

−∞
e−u

2

du.

Let G(z) = zn. Then

(G ∗ dF )(z) =

∫ ∞

−∞
(z − is)ndF (s)

=
1√
π

∫ ∞

−∞
(z − is)ne−s

2

ds

= 2−nhn(z)

where hn(z) is the nth degree Hermite polynomial defined by

hn(z) = (−1)nez2 dn

dzn

(

e−z
2
)

.

Therefore, Theorem 1 gives a new proof that the zeros of Hermite polyno-
mials are simple and real. We do admit, however, that the classical proof
involving inner products is simpler.

6. The hypotheses in Proposition 2 and Theorem 1 appear to be necessary.
Relaxing them produces non-examples with non-real zeros.

(a) For arbitrary symmetric distribution functions F , Theorem 1 does
not necessarily hold. The function G(z) = z4 has only real zeros,
but

H(z) = 1
19

(

G(z + i) + 17G(z) +G(z − i)
)

has no real zeros.
(b) The function G(z) = zez

2

has genus 2 which is not permitted in
either Proposition 2 or Theorem 1. Then

H(z) =
1

2

(

G(z + i) +G(z − i)
)

does not have only real zeros. There is a zero approximately at
z = 0.957505i.
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(c) By Lemma 2, if G ∈ LP∗, then the derivative G′ is also in LP∗.

The function G(z) = zez
2

in part (b) does have only real zeros but

its genus it too large. G′(z) = (1 + 2z2)ez
2

has non-real zeros.

7. In Theorem 1 let ai = 2−i. The distribution function of the random
variable Y =

∑∞
i=1 2

−iXi is

F (x) =

{

1
2 + x

2 if −1 ≤ x ≤ 1,

0 otherwise.

For G as in Theorem 1,

H(z) = (G ∗ dF )(z) =
1

2

∫ 1

−1

G(z − is)ds

has only simple, real zeros.

8. An interesting question to consider is how the distribution of the spacing
of the zeros of G compares with the distribution of the spacing of the zeros
of G ∗ dF .

Experimental data obtained by Andrew Odlyzko (see for example [Odl87]
and [Odl00]) has supported the Montgomery pair-correlation conjecture
[Mon73] as well as the idea that the the zeros of the zeta function have a
distribution corresponding to the distribution of eigenvalues in the Gauss-
ian Unitary Ensemble. Examples of recent work relating to a spectral in-
terpretation of the zeros of the zeta function are [KS99], [KS], and [Rub98].

Perhaps, one could hypothesize that G ∗ dF satisfies the type of distri-
bution of zeros expected to hold for the Riemann zeta function and then
derive consequences for G.
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