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Abstract. We generalize work of Stacy [6], to obtain upper bounds indepen-

dent of p for the minimal height of a totally p-adic algebraic number of degree
4. We also compute actual values of this minimal height for small primes p.

1. Introduction

For an algebraic number α with minimal polynomial fα, we define the Mahler
measure and the logarithmic Weil height.

Definition 1. Let f =
∑n
i=0 aix

i ∈ Z[x] be a degree n polynomial with complex
roots α1, . . . , αn. The Mahler measure of f is defined as,

M(f) = |an|
n∏
i=1

max(1, |αi|).

Definition 2. Let α be a nonzero algebraic number with minimal polynomial
fα ∈ Z[x] over Z of degree n. The logarithmic Weil height of α is

h(α) =
log(M(fα))

n
.

In 1975, Schinzel [5] (see also [3]) proved that for any totally real algebraic
number α (i.e., an α such that every root of its minimal polynomial over Q is real)
with α 6= 0,±1,

h(α) ≥ 1 +
√

5

2
.

As a generalization of the concept of a totally real algebraic number, we make
the following definition.

Definition 3. Let p be a prime number. An algebraic number is totally p-adic if
all of the roots of its minimal polynomial over Q lie in Qp.

Equivalently, we note that an algebraic number α is totally p-adic if and only if
p splits completely in Q(α).

Bombieri and Zannier [2] proved the existence of a lower bound for the height
of nonzero totally p-adic non-roots of unity when the degree of α is allowed to be
arbitrary. Pottmeyer [4, Theorems 1.1 and 1.2] proves that for such α, we have

h(α) >
log(p/2)

p+ 1
, for odd primes p
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and

h(α) >
log(2)

4
, for p = 2.

In this paper, we limit ourselves to nonzero totally p-adic algebraic numbers of
fixed degree n that are not roots of unity, and make the following definition:

Definition 4. Let p be a prime number, and let n be a positive integer. Then
τn,p is the minimum height of a totally p-adic nonzero algebraic number of degree
n that is not a root of unity.

In 2020, Stacy [6] proved the following bound on τ3,p.

Theorem 1. For any prime number p > 3,

τ3,p ≤ 0.703762.

This bound holds for all primes p > 3; Stacy then proceeds to find the actual
values of τ3,p for small primes p > 3.

In this paper, we extend Stacy’s results to algebraic numbers of degree 4, proving
that

Theorem 2. For any prime number p,

τ4,p ≤
log(5)

4
≈ 0.40236.

In addition, we give a table of actual values for τ4,p for small primes p, together
with the minimal polynomial of a totally p-adic algebraic number α of degree 4
having minimal height; i.e., a totally p-adic α with h(α) = τ4,p.

2. (Z/2Z)3-extensions of Q

In this section, we will show that given an extension L/Q with Galois group
(Z/2Z)3 and generators for the degree 4 subfields of L, we obtain a bound B
depending only on L and the choice of generators (but not on p), such that for all
primes p that are unramified in L/Q, we have τ4,p < B. To get an explicit value
for B we will choose a specific field L in section 3.

For the remainder of this section, let L/Q be any Galois extension with Galois
group (Z/2Z)3. We note that L has seven quartic subfields, each of which has
Galois group (Z/2Z)2; we will denote these fields by K1, . . . ,K7.

Theorem 3. Let L/Q be a Galois extension with Gal(L/Q) ∼= (Z/2Z)3. For any
prime number p that is unramified in L/Q, at least one of the quartic subfields Ki

is generated by an algebraic number αi that is totally p-adic.

Proof. For each quartic subfield Ki of L, choose a generator αi ∈ Ki such that
Ki = Q(αi) and αi is not a root of unity.

If we let p be a rational prime that is not ramified in L/Q, then the Frobenius
element of p will have order either 1 or 2 (as, indeed, is true of all elements of the
Gal(L/Q)).

If the order of the Frobenius of p is 1, then p splits completely in L, and hence
in all of the Ki. Hence, each αi is totally p-adic.

On the other hand, if the order of Frobenius of p is 2, then the fixed field of
the Frobenius will be one of the Ki. Since L/Q is an abelian extension, every
unramified prime p splits completely in the fixed field of its Frobenius, so p splits
completely in Ki, and the generator αi is totally p-adic. �
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Subfield Defining Polynomial Mahler Measure Height

Q(
√
−2,
√
−3) 3x4 − 2x2 + 3 3.000 0.274653

Q(
√
−2,
√

3) 3x4 + 2x2 + 3 3.000 0.274653

Q(
√
−1,
√

2) x4 + 2x2 + 4x+ 2 3.414 0.306971

Q(
√
−1,
√

3) x4 + 2x3 + 2x2 − 2x+ 1 3.732 0.329236

Q(
√

2,
√

3) x4 − 4x2 + 1 3.732 0.329236

Q(
√

2,
√
−3) x4 + 2x2 + 4 4.000 0.346574

Q(
√
−1,
√

6) 5x4 + 4x3 + 4x+ 5 5.000 0.402360

Table 1. Quartic Subfields of Q(
√
−1,
√

2,
√

3)

Choosing the αi as in the proof of the theorem, we see that for an arbitrary p
that is unramified in L, there is at least one αi that is totally p-adic, so we see that
τ4,p ≤ h(αi) ≤ maxi(h(αi)). We thus get the following bound:

Theorem 4. Given αi generating the Ki as described above, we have that for p
unramified in L,

τ4,p ≤ max(h(αi)).

In order to get an explicit bound (independent of p) on the value of τ4,p, we
see that we only need to find a specific Galois extension L as above, determine
generating elements αi for each Ki, and find their heights. If we can find αi of
minimal height in Ki, we will obtain a better bound.

3. Bounding τ4,p

Proof of Theorem 2. To bound τ4,p, we choose the field L = Q(
√
−1,
√

2,
√

3). One
checks easily that Gal(L/Q) ∼= (Z/2Z)3, and that L/Q is ramified only at 2 and 3.
For each of the seven degree 4 subfields, we list a defining polynomial, the Mahler
measure of the polynomial, and the height of a root of the polynomial (rounded to
six decimals) in Table 1.

To compute this table, we used GP/Pari [7] to compute a monic defining poly-
nomial and integral basis for each field. We then computed the minimal polynomial
of all small integer linear combinations of the integral basis to find a monic defining
polynomial with small Mahler measure. Doing this yielded monic defining polyno-
mials for the seven fields that all had Mahler measure at most 9. Finally, using
the techniques of the next section, we created a list of all irreducible degree 4 poly-
nomials of Mahler measure less than 9, and for each field, we searched the list to
find a non-cyclotomic polynomial with minimum Mahler measure defining the field,
which we then included in the table. By Theorem 4 and Table 1, we then see that
for p 6= 2, 3, we have τ4,p ≤ log(5)/4 ≈ 0.4023595.

Using this same list of polynomials, we found the polynomial f2 = 2x4−x3+2x2+
x+4, which has Mahler measure 4, and note that 2 splits completely in the root field
of f2. Hence, a root α of f2 is totally p-adic and has height log(4)/4 ≈ 0.346574.
We thus find that τ4,2 ≤ 0.346574. Similarly, for p = 3, we find the polynomial
f3 = 3x4 − 4x3 + 4x2 − 4x + 3 with Mahler measure 3; it defines a field in which
3 splits completely. The height of a root of f3 is log(3)/4 ≈ 0.2746531, so we find
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that τ4,3 ≤ 0.2746531. Hence, we have proven that for all p,

τ4,p ≤
log(5)

4
≈ 0.4023595,

completing the proof of Theorem 2. �

By examining the list of polynomials of Mahler measure at most 5, we find that
there is no other (Z/2Z)3-field such that all of its quartic subfields have a defining
polynomial with Mahler measure at most 5. Hence, the bound that we find is the
best possible bound obtainable by this method.

4. Actual values of τ4,p for small p

In order to compute actual values of τ4,p for small p, we follow a procedure
similar to that described by Stacy in [6] for τ3,p.

We begin by bounding the coefficients of a polynomial in terms of its Mahler
measure:

Theorem 5. [1, pg. 25] Let f = anx
n + an−1x

n−1 + · · ·+ a1x
1 + a0, and let M(f)

be the Mahler measure of f . Then

|an−r| ≤
(
n

r

)
M(f).

This implies that for a given bound B, all irreducible degree n polynomials
with Mahler measure at most B lie in the finite set of polynomials satisfying the
bounds |an−r| ≤

(
n
r

)
B. Using GP/Pari [7], we can examine each polynomial with

coefficients satisfying these bounds and eliminate those with Mahler measure greater
thanB and those that are reducible. In addition, we can use symmetry to reduce the
number of polynomials we need to examine; since f(x) and ±f(−x) have the same
Mahler measure and define the same field, we only need to examine polynomials
with an > 0 and an−1 ≥ 0.

Using these bounds we created three lists of quartic polynomials. The first
consists of all irreducible (over Z) quartic polynomials with Mahler measure at
most 9 (subject to our symmetry constraints). This search took approximately 6
hours. The list contains 286,546 polynomials. Using this list as described in the
previous section, we reduced the bound on τ4,p from log(9)/4 to log(5)/4.

We then create a list of all irreducible quartic polynomials with Mahler mea-
sure at most 5 (subject to our symmetry constraints). This list contains 13,408
polynomials. Since we have proven that τ4,p ≤ log(5)/4 for all primes p, we are
guaranteed that for every prime p, some polynomial in this list has a totally p-adic
root. Computing this list from scratch took approximately 10 minutes; we could
also have computed it just by eliminating polynomials with Mahler measure larger
than 5 from the first list.

Finally, we reduced the size of this second list by eliminating polynomials that
define isomorphic number fields. If two polynomials define isomorphic number
fields, their roots are totally p-adic for the same set of primes p, so we only need
to keep the polynomial with smaller Mahler measure (although we do not keep
cyclotomic polynomials, whose roots are roots of unity). With this reduction,
we obtained a list of 4,562 irreducible polynomials defining nonisomorphic quartic
fields, with the property that for any prime p the roots of at least one of these
polynomials are totally p-adic. Our method of construction guarantees that for
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p τ4,p Defining polynomial f Mahler Measure of f
2 0.346574 2x4 + x3 + 2x2 − x+ 4 4.00000
3 0.274653 3x4 + x3 + 5x2 + x+ 3 3.00000
5 0.274653 2x4 + 3 3.00000
7 0.274653 3x4 − 4x2 + 3 3.00000
11 0.173287 2x4 − 3x2 + 2 2.00000
13 0.235153 2x4 + x2 − 2 2.56155
17 0.232996 x4 + 2x3 − x2 + x+ 2 2.53954
19 0.173287 2x4 + x2 + 2 2.00000
23 0.158244 x4 + x3 − x+ 1 1.88320
29 0.120303 x4 + x2 − 1 1.61803
31 0.173287 2x4 − x2 + 2 2.00000
37 0.173287 x4 + x3 − x− 2 2.00000
41 0.173287 x4 + 2x2 + 2 2.00000
43 0.135884 x4 + x3 + 2x2 + 2x+ 1 1.72208
47 0.173287 2x4 + x2 + 2 2.00000
53 0.173287 2x4 + x2 + 2 2.00000
59 0.156051 x4 + x3 − 2x− 1 1.86676
61 0.207861 x4 + 2x3 + 2x+ 1 2.29663
67 0.173287 x4 + x2 + x+ 2 2.00000
71 0.156051 x4 + x3 − 2x− 1 1.86676
73 0.173287 x4 + 2 2.00000
79 0.173287 x4 + x3 − x2 + 2 2.00000
83 0.080571 x4 + x− 1 1.38028
89 0.120303 x4 + x2 − 1 1.61803
97 0.173287 2x4 + x3 + x+ 2 2.00000
101 0.120303 x4 + x2 − 1 1.61803
103 0.135884 x4 + x3 + 2x2 + 2x+ 1 1.72208
107 0.173287 2x4 − x2 + 2 2.00000
109 0.173287 2x4 + 2x3 + x2 + 2x+ 2 2.00000
113 0.144611 x4 + x3 + x2 − x− 1 1.78326
127 0.158244 x4 + x3 − x+ 1 1.88320
131 0.173287 2x4 + x3 + x+ 2 2.00000
137 0.158244 x4 + x3 − x+ 1 1.88320
139 0.135884 x4 + x3 + 2x2 + 2x+ 1 1.72208
149 0.173287 2x4 + 2x3 + x2 + 2x+ 2 2.00000
151 0.158244 x4 + x3 − x+ 1 1.88320
157 0.110534 x4 + x2 + x+ 1 1.55603
163 0.173287 x4 + x+ 2 2.00000
167 0.173287 x4 + x3 + x+ 2 2.00000

Table 2. Actual values of τ4,p for p < 170 (rounded to six decimals)

each prime p, this list contains a noncyclotomic polynomial of minimal possible
Mahler measure whose roots are totally p-adic.

For a given prime p, we can search through this third list (we could also search
through the second list, but less efficiently) to find the smallest polynomial (in
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terms of Mahler measure) in which p splits completely. Then the height of a root
of this polynomial will be the actual value of τ4,p.

In Table 2, we display the results of this computation for each prime p < 170. For
each such prime, we give the actual value of τ4,p (rounded to six decimal places), as
well as a polynomial that achieves this value. We note that our list of polynomials
guarantees that for any p (no matter how large), we will rapidly be able to compute
the actual value of τ4,p.

The smallest possible value of τ4,p is 0.080572, and is achieved at primes that
split completely in the field defined by x4 − x − 1 (the polynomial of smallest
Mahler measure in our sorted list). The largest value of τ4,p for 2 < p < 1010 is
log(3)/4 ≈ 0.274654, (note that τ4,2 is larger than this value). For τ4,p to be larger
than log(3)/4, the prime p would have to fail to split completely in all of the 333
distinct quartic fields having defining polynomials with Mahler measure at most 3;
heuristically, about 1 in 3.5·1011 primes should satisfy this condition (assuming that
the probability of a prime splitting completely in a quartic field is the reciprocal of
the degree of its Galois closure). Since there are only about 4.5 · 108 primes below
1010, it is not surprising that we found none (except p = 2) with τ4,p > log(3)/4.
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