
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
S 0002-9939(09)10131-4
Article electronically published on September 17, 2009

LLL REDUCTION AND A CONJECTURE OF GUNNELLS

DARRIN DOUD AND RUSSELL RICKS

(Communicated by Ken Ono)

Abstract. Paul Gunnells has developed an algorithm for computing actions
of Hecke operators on arithmetic cohomology below the cohomological dimen-
sion. One version of his algorithm uses a conjecture concerning LLL-reduced
matrices. We prove this conjecture for dimensions 2 through 5 and disprove it
for all higher dimensions.

1. Introduction

Let Γ be a torsion-free finite-index subgroup of SLn(Z) or GLn(Z). In [5], Paul
Gunnells describes algorithms to compute the action of the Hecke operators on the
cohomology groups Hν−1(Γ,Z) when n = 2, 3, or 4, where ν is the cohomological
dimension of Γ. Such computations are useful in testing conjectures concerning rela-
tionships between arithmetic cohomology and Galois representations [1, 2, 3]. Gun-
nells’ algorithms use either a conjecture concerning Voronoi reduction [5, Conj. 3.5],
or a conjecture concerning LLL reduction [5, Conj. 3.9], both of which he states for
arbitrary n. The version using Voronoi reduction generalizes more easily to other
contexts, but the version using LLL reduction is computationally more convenient,
due to the easy availability of high-quality code for LLL reduction. In this paper,
we prove the conjecture involving LLL reduction for n = 2, 3, 4, and 5 (using a
computer calculation in dimensions 4 and 5), and we produce a counterexample for
it in each dimension higher than five. Note that the fact that the conjecture is false
in dimensions greater than 5 does not take away from its usefulness in computing
with cohomology in dimensions 2, 3, and 4.

2. LLL-reduced bases

We recall the definitions of Gram-Schmidt orthogonalization and LLL-reduced
bases from [4] (see also [6]).

Definition 2.1. Let b1, . . . , bm be an ordered basis for a subspace V of Rn. Define
b∗1 = b1, and inductively define b∗i (for 1 < i ≤ m) by

b∗i = bi −
i−1∑
j=1

µijb
∗
j ,
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where, for 1 ≤ j < i,

µij =
bi · b∗j
|b∗j |2

.

We note that the basis {b∗1, . . . , b∗m} is orthogonal but not orthonormal. In ad-
dition, we see that the orthogonalization depends strongly on the ordering of the
original basis. In what follows, we will use the convention that, when given an or-
dered basis {bi}, the vectors {b∗i } are the basis obtained by applying Gram-Schmidt
orthogonalization and the constants µij are the constants defined above.

Definition 2.2 (LLL-reduced). We say that a basis {b1, . . . , bm} for a subspace V
of Rn is LLL-reduced if

(1) for 1 ≤ j < i ≤ m, we have |µij | ≤ 1
2 ,

(2) for 2 ≤ i ≤ m, we have |b∗i + µi,i−1b
∗
i−1|2 ≥ 3

4 |b∗i−1|2.

Because the b∗i are orthogonal, the second condition is easily seen to be equivalent
to the condition

|b∗i |2 ≥
(
3

4
− µ2

i,i−1

)
|b∗i−1|2.

Given a basis for a lattice V of Rn, there is a fast (polynomial time) algorithm
for computing an LLL-reduced basis for V [4, Section 2.6]. We will not describe
this algorithm, as we do not need it, but it is used in Gunnells’ algorithm for
computing with modular symbols. We will need the following elementary bounds
on LLL-reduced bases.

Proposition 2.3. Let b1, . . . , bm be an LLL-reduced basis for a subspace of R
n.

Then for i ≥ j, the following inequalities hold:

(1) |b∗j |2 ≤ 2i−j |b∗i |2,
(2) |bj |2 ≤ (2i−2 + 2i−j−1)|b∗i |2.

Proof. We take our proof directly from [4, p. 85]. Since the bi are LLL-reduced,
we have that

|b∗i |2 ≥ (3/4− µ2
i,i−1)|b∗i−1|2 ≥ 1

2
|b∗i−1|2.

Induction yields (1).

Since bj = b∗j +
∑j

k=1 µjkb
∗
k, and the b∗k are orthogonal, we see (using (1)) that

|bj |2 = |b∗j |2 +
j−1∑
k=1

µ2
jk|b∗k|2 ≤ |b∗j |2 +

1

4

j−1∑
k=1

2j−k|b∗j |2 =

(
2j−1 + 1

2

)
|b∗j |2.

Combining this with (1), we obtain (2). �

Definition 2.4. Let B be an n× n matrix with integer entries. We say that B is
reduced if

(1) | det(B)| > 1,
(2) the rows of B form an LLL-reduced basis for Rn.
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3. Candidates for modular symbols

Definition 3.1. Let B be an n × n matrix with integer entries. A candidate for
B is a vector v ∈ R

n, so that for each matrix Bi(v) formed by replacing the ith
column of B with v (1 ≤ i ≤ n), we have | det(Bi(v))| < | det(B)|.

Gunnells’ algorithm requires us to find candidates for large numbers of matrices.
In order to do this, Gunnells uses LLL reduction on the rows of a matrix, finds a
candidate for the reduced matrix, and reverses the transformation giving the LLL-
reduced basis to obtain a candidate for the original matrix. In order to quickly find
a candidate for the LLL-reduced matrix, Gunnells stated the following conjecture.

Conjecture 3.2 ([5, Conj. 5.9]). Let B be a reduced n × n matrix. Then one of
the standard basis elements e1, . . . , en of Rn is a candidate for B.

Gunnells gave extensive computational evidence for the conjecture with n up to
20. He also proved the conjecture for n× n matrices B with | det(B)| > 2n(n−1)/2,
and for certain other cases. He did not, however, claim to have proved the conjecture
completely for any specific value of n. In what follows, we will prove the conjecture
for 2 ≤ n ≤ 5 and disprove it for n ≥ 6.

We begin by giving two restatements of the conjecture, which we will use in place
of the original conjecture.

Conjecture 3.3. For a reduced n× n matrix B, all the entries of some column of
adj(B) have absolute value strictly less than | det(B)|.

Conjecture 3.4. For a reduced n× n matrix B, all the entries of some column of
B−1 have absolute value strictly less than 1.

These two versions of the conjecture are easily seen to be equivalent to each
other, since det(B)B−1 = adj(B). To see that they are equivalent to the original
conjecture, we note that if we denote by Bij the matrix obtained by replacing the
jth column of B by ei, then the ji entry of adj(B) is (up to sign) the same as
det(Bij). Hence, ei is a candidate for B if and only if all entries of the ith column
of adj(B) have absolute value less than | det(B)|. Our computations will be done
to investigate Conjecture 3.4.

4. Bounds for reduced bases

Throughout the rest of this paper, B is an n × n reduced matrix with rows bi,
the b∗i are the vectors obtained from the bi by Gram-Schmidt orthogonalization,
and the µij are the scalars obtained from Gram-Schmidt orthogonalization.

We begin by proving an elementary bound which guarantees that for certain
reduced bases, en is a candidate. Note that this lemma is just Lemma 3.13 in [5].

Lemma 4.1. Let B be an n×n reduced matrix. If |b∗n| > 1, then en is a candidate
for B.

Proof. We begin by noting that, for |b∗n| > 1, we have

| det(B)| =
n∏

i=1

|b∗i | >
∏
i<n

|b∗i |.

Now, for each standard basis vector ek of Rn, let Bk be the matrix obtained by
replacing the last row of B by ek. We will denote by e∗k the final vector obtained



4 DARRIN DOUD AND RUSSELL RICKS

by performing Gram-Schmidt orthogonalization on the rows of Bk. Clearly, |e∗k| ≤
|ek| = 1, so we have that

| det(Bk)| = |e∗k|
∏
i<n

|b∗i | ≤
∏
i<n

|b∗i | < | det(B)|,

for each k with 1 ≤ k ≤ n.
Now we note that det(Bk) has the same absolute value as the determinant of

the matrix obtained by replacing the kth column of B by en. Hence, since each
| det(Bk)| < | det(B)|, we see that en is a candidate for B. �
Lemma 4.2. If B is reduced, and |b∗n−1|2 > (1 − 4

3µ
2
n,n−1)

−1, then en−1 is a
candidate for B.

Proof. We define Ck to be the matrix obtained from B by replacing the (n− 1)st
row by the standard basis vector ek, and we define Dk to be the matrix obtained by
swapping the last two rows of Ck. Note that en−1 is a candidate for B exactly when
each | det(Dk)| = | det(Ck)| < | det(B)|. Applying Gram-Schmidt orthogonalization
to the rows of Dk, we obtain an orthogonal set

b∗1, . . . , b
∗
n−2, d

∗
n−1, d

∗
n.

Note that |d∗n| ≤ |ek| = 1. Hence, we see that

| detDk| = |d∗n−1||d∗n|
n−2∏
i=1

|b∗i | ≤ |d∗n−1|
n−2∏
i=1

|b∗i |,

and this will be less than | detB| if |d∗n−1| < |b∗n−1||b∗n|.
Examining the definition of the Gram-Schmidt process, we see that

d∗n−1 = bn −
n−2∑
j=1

µnjb
∗
j = b∗n + µn,n−1b

∗
n−1,

and, since b∗n and b∗n−1 are orthogonal, we have that

|d∗n−1|2 = |b∗n|2 + µ2
n,n−1|b∗n−1|2,

so en−1 will be a candidate if

|b∗n|2 + µ2
n,n−1|b∗n−1|2 < |b∗n−1|2|b∗n|2.

Now under the assumption that |b∗n−1|2 > (1 − 4
3µ

2
n,n−1)

−1, and using that
{b1, . . . , bn} are LLL-reduced, we have that

|b∗n|2 ≥
(
3

4
− µ2

n,n−1

)
|b∗n−1|2 >

3
4 − µ2

n,n−1

1− 4
3µ

2
n,n−1

= 3/4.

Hence,

|b∗n−1|2 >
1

1− 4
3µ

2
n,n−1

>
1

1− 1
|b∗n|2

µ2
n,n−1

=
|b∗n|2

|b∗n|2 − µ2
n,n−1

.

Since, in an LLL-reduced basis, µ2
n,n−1 ≤ 1/4, we have that |b∗n|2 − µ2

n,n−1 > 0.

Multiplying by it, we see that |b∗n−1|2(|b∗n|2 − µ2
n,n−1) > |b∗n|2, so that

|b∗n|2 + µ2
n,n−1|b∗n−1|2 < |b∗n−1|2|b∗n|2.

As we have seen, this implies that en−1 is a candidate for B. �
Corollary 4.3. If B is reduced and |b∗n−1|2 > 3/2, then en−1 is a candidate for B.
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Proof. If B is reduced, µ2
n,n−1 ≤ 1/4. Hence, (1− 4

3µ
2
n,n−1)

−1 ≤ 3/2. �

Corollary 4.4. If B is reduced, and no standard basis vector is a candidate for B,
then for i < n, |b∗i |2 ≤ 3 · 2n−i−2, and det(B)2 ≤ 3n−12(n−1)(n−4)/2.

Proof. By Lemma 4.1, |b∗n|2 ≤ 1, and by Proposition 2.3 and Corollary 4.3, |b∗i |2 ≤
2n−i−1|b∗n−1|2 ≤ 3 · 2n−i−2 for i < n. Hence

det(B)2 =

n∏
i=1

|b∗i |2 ≤
n−1∏
i=1

3 · 2n−i−2 = 3n−12(n−1)(n−4)/2.

�

Corollary 4.5. If B is reduced, and no standard basis vector is a candidate for B,
then for i < n, |bi|2 ≤ 3

4 (2
n−2 + 2n−i−1) and |bn|2 ≤ 5

8 + 3 · 2n−4.

Proof. By Proposition 2.3 and Corollary 4.3, for i < n,

|bi|2 ≤ (2n−3 + 2n−i−2)|b∗n−1|2 ≤ 3

4
(2n−2 + 2n−i−1).

Since {b∗i } is an orthogonal basis, µ2
ij ≤ 1

4 , |b∗n|2 ≤ 1, and |b∗i |2 ≤ 3 · 2n−i−2, we see
that

|bn|2 = |b∗n|2+
n−1∑
i=1

µ2
n,i|b∗i |2 ≤ 1+

n−1∑
i=1

1

4
·3 ·2n−i−2 = 1+

3

8
(2n−1−1) =

5

8
+3 ·2n−4.

�

5. Dimensions two and three

Theorem 5.1. Conjecture 3.2 is true in dimensions two and three.

Proof. In the two-dimensional case (n = 2), we find from Corollary 4.4 that any
counterexample to the conjecture would have 1 < det(B)2 ≤ 3/2. Since det(B)
must be an integer, no such counterexample can exist.

In three dimensions, we see that any counterexample would have 1 < det(B)2 ≤
9/2. Hence, it must be the case that det(B)2 = 4. In addition, Lemma 4.1 and
Corollary 4.3 show that

|b1|2 = |b∗1|2 =
det(B)2

|b∗2|2|b∗3|2
≥ 8

3
> 2.

However, by Corollary 4.5, |b2|2 ≤ 9/4 < 3. Hence, |b2|2 ≤ 2, and we have, from
Definitions 2.1 and 2.2, that

|b1|2 = |b∗1|2 ≤ 4

3
|b∗2 + µ21b

∗
1|2 =

4

3
|b2|2 ≤ 8

3
< 3.

This implies that 2 < |b1|2 < 3, which is impossible. Hence, there can be no
counterexamples to the conjecture in three dimensions. �
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6. Dimensions four and five

For dimension four, Corollary 4.5, together with the fact that each |bi|2 must be
an integer, yields the following bounds on the size of the |bi|2 for any counterexample
to the conjecture:

|b1|2 ≤ 6, |b2|2 ≤ 4, |b3|2 ≤ 3, |b4|2 ≤ 3.

For dimension five, similar considerations yield the bounds

|b1|2 ≤ 12, |b2|2 ≤ 9, |b3|2 ≤ 7, |b4|2 ≤ 6, |b5|2 ≤ 6

for any counterexample to the conjecture. For each of these cases, we wrote a com-
puter program (in GP/PARI [7]) which searched through all LLL-reduced bases con-
sisting of vectors satisfying the bounds in Corollary 4.5, Lemma 4.1, and Lemma 4.2,
and checked whether the conjecture was true for each such basis. Since any coun-
terexample to the conjecture must satisfy these bounds, finding no counterexamples
proves the theorem. We also used symmetry to reduce the search space, as described
in the following paragraphs.

We noted that any counterexample could have the entries of the bi permuted
(for instance, swapping the third and fourth coordinates of all the bi) and would
still yield a counterexample. In addition, multiplying a fixed coordinate of each bi
by −1 would also yield a counterexample. Applying permutations and negations
of coordinates allowed us to look only at bases for which b1 had non-negative,
non-increasing entries. This greatly reduced the number of possibilities for b1.

After selecting a vector for b1, we looked at possibilities for b2. If an entry of
b1 was 0, we looked only at b2 in which that coordinate was non-negative (since
negating a coordinate does not affect a counterexample, this is justified). We then
checked that b∗2 was smaller than 3 · 2n−4, as required by Corollary 4.4, and that
the combination of b1 and b2 satisfied the properties of an LLL-reduced basis.

We then selected vectors b3, b4, . . . , in turn, at each stage checking that the given
vector satisfied the length bounds and the conditions to be part of an LLL-reduced
basis, and that the resulting b∗i satisfied the length requirements of Corollary 4.4
and Lemma 4.2 for a counterexample.

Once all the bi were chosen, we checked to see if the resulting matrix B was a
counterexample to Conjecture 3.4.

The degree-four computation checked a total of 1,280 reduced bases in 1.1
seconds, and found that no counterexamples exist. The degree-five computation
checked a total of 1,469,824 reduced bases in 1.82 hours and found that no coun-
terexamples exist. Hence, the following theorem is proved.

Theorem 6.1. Conjecture 3.2 is true in dimensions four and five.

7. Dimension six and higher

In dimension six, a computer search similar to that used for dimensions four and
five proved impractical, since the search space is much larger. However, in checking
the size of the search space, a preliminary computation yielded the following result
after less than one day of computer time.

Theorem 7.1. Conjecture 3.2 is false in dimensions six and higher.
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Proof. In dimension six, we examine the following matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0
0 0 −2 0 1 1
−1 1 −1 1 0 0
1 1 1 −1 0 0
1 0 −1 1 0 0
0 1 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We note that its rows form an LLL-reduced basis of R6, and its determinant is −8.
No standard basis vector is a candidate for A, since replacing the fifth column of
A by any standard basis vector gives a matrix with determinant ±8. Alternatively,
we note that every entry in the fifth row of A−1 has absolute value 1, so that
Conjecture 3.4 fails for A. Hence, Conjecture 3.2 is false in dimension six.

If n > 6, let An be the block diagonal matrix A ⊕ In−6, where Ik denotes the
k × k identity matrix. Then the rows of An are easily seen to be LLL-reduced,
since the rows of A are, and the conjecture clearly fails for An. Indeed, we see that
A−1

n = A−1 ⊕ In−6, and since every column of A−1 has an entry of absolute value
1, every column of A−1

n has an entry of absolute value 1. Hence, no standard basis
vector is a candidate for An, and Conjecture 3.2 is false in every dimension higher
than 6. �

We remark that even though [5, Conj. 3.9] is false in dimension six and higher,
it may still be possible to use LLL reduction to find candidates for matrices in
these dimensions. Applying LLL reduction to a basis that is already LLL-reduced
can change the basis. For instance, as was pointed out by the referee, applying
LLL reduction (as implemented in GP/PARI [7]) to the rows of the matrix in
our counterexample yields a matrix which does have a standard basis vector as a
candidate. Hence, some adjustment to the algorithm could yield a method of using
LLL reduction to find candidates for matrices in arbitrary dimension.
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