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Abstract. We show that if L/K is a degree p extension of number fields
which is wildly ramified at a prime p of K of residue characteristic p, then

the ramification groups of p (in the splitting field of L over K) are uniquely
determined by the p-adic valuation of the discriminant of L/K.

1. Introduction. Although the relative discriminant of an extension of number
fields depends on the ramification in the extension and can be determined by
studying the ramification in the Galois closure of the extension, in general, the
ramification is not uniquely determined by the discriminant. In this note we show
that in certain cases it is possible to determine wild ramification (including the
filtration of higher ramification subgroups) in terms of the relative discriminant.
The relationship between the discriminant and the ramification subgroups is in
fact given (for the fields which we consider) by a simple formula.

Let ∆L/K denote the relative discriminant of a extension L/K of number
fields. We prove the following theorem (using the notation defined in Section 2):
Theorem 1. Let L/K be a degree p extension of number fields, and let p be a
prime of K lying over p ∈ Q. Suppose that p is wildly ramified in L/K. Let
n = vp(∆L/K). Then there are integers d and t such that

|Gi,p| =

 pt if i = 0
p if 0 < i ≤ d
1 if i > d

,

with n = (p− 1)(1 + d/t), and (d, t) = 1.
We note that due to the condition that (d, t) = 1, the integers d and t are in

fact uniquely defined in terms of n as

d =
n− (p− 1)
(n, p− 1)

, and t =
p− 1

(n, p− 1)
.

We prove the theorem in two parts–in Section 3 we prove the formula for n
in terms of d and t, and in Section 4 we prove that d and t are relatively prime.

2. Ramification groups. Let M denote the Galois closure of L/K. Then we
know that Gal(M/K) is a subgroup of Sp. Choose a prime P|p, and define the
ramification groups

Gi,p = {σ ∈ Gal(M/K) : vP(σ(α)− α) ≥ i+ 1 for all α ∈M}.
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Note that although the groups Gi,p depend on the choice of P, their order does
not. In fact, changing the choice of P has the effect of conjugating the Gi,p.
Denote by e the order of G0,p (the ramification index), by f the inertial degree
of any prime of M lying over p, and by g the number of primes of M lying over
p.

It is well known that Gi,p is normal in G0,p for all i, and that G1,p is the
p-Sylow subgroup of G0,p. Since p exactly divides the order of Sp, the only
possible orders for Gi,p with i > 0 are 1 and p. Hence, if we determine the
last nontrivial Gi,p, and the order of G0,p, then we have fully determined the
filtration of ramification subgroups. This shows that determining d and t as
described in the theorem does determine the ramification filtration.

We further note that the inertia group G0,p must be not only a subgroup of
Sp, but also a subgroup of the normalizer NSp(G1,p). Since p is assumed to be
wildly ramified in L, the order of G1,p must be p, and as a subgroup of Sp it
is generated by a p-cycle τ . The normalizer of 〈τ〉 in Sp is metacyclic, and is
generated by τ and a (p−1)-cycle ψ. For each k dividing p−1, there is a unique
subgroup of this normalizer of order pk, and this subgroup is generated by τ and
ψ(p−1)/k. Finally, note that the action of 〈ψ〉 on 〈τ〉 is faithful, so that the only
power of ψ which fixes τ is the identity.

3. Different calculations. Let L/K be an extension of number fields satisfying
the conditions of the theorem, and let M be the Galois closure of L over K. Note
that there is a unique prime P of L lying over p. Since the degree of M/L is
prime to p, P is tamely ramified in M/L. By [2, Chapter IV, Prop. 4], we have
that the relative different DM/L satisfies

vP (DM/L) = t− 1,

where P is any prime of M lying over P. Then

vP(∆M/L) = vP(NM/L(DM/L)) = fg(t− 1).

Similarly, we have that

vP (DM/K) = (e− 1) + d(p− 1),

so that

vp(∆M/K) = fg((e− 1) + d(p− 1)).

Using the relationship [1, Theorem 2.5.1]

∆M/K = ∆[M :L]
L/K NL/K(∆M/L)

and the fact that the norm (from L to K) of P is p, we find, by taking p-adic
valuations, that

fg((e− 1) + d(p− 1)) =
efg

p
n+ fg(t− 1).

Solving for n gives

n = (p− 1)(1 + d/t),

as desired.
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4. Action of tame ramification on wild ramification. It remains to show
that (d, t) = 1. In order to show this, we require several additional results
concerning ramification groups [2, Chapter IV, Section 2].

First, there is an injective homomorphism

θ0 : G0,p/G1,p → F̄
×
p ,

so that in particular, G0,p/G1,p is cyclic. Let ψ be a generator. In addition, for
each i > 0, there is a homomorphism

θi : Gi,p/Gi+1,p → F̄
×
p .

Finally, there is a compatibility between θ0 and θi, such that for s ∈ G0,p and
t ∈ Gi,p/Gi+1,p, we have

θi(sts−1) = θ0(s)iθi(t).

Note that if we take i = d to be the depth of the filtration, Gi+1,p is trivial,
so that we may identify Gd,p (a multiplicative group) with its image under θd
(an additive group). Hence, the compatibility condition above shows that for
t ∈ Gd,p,

sts−1 = tθ0(s)d .

We now let σ and τ be generators of G0,p, as described previously, so that τ
is a p-cycle, σ is a power of a (p− 1)-cycle, and the only power of σ which fixes
τ is the identity. Then τ is an element of Gi,p for any 1 ≤ i ≤ d, and σ is a
generator of G0,p/G1,p. Note that we may in fact identify Gd,p with the image
of θd, since Gd+1,p is trivial.

We then have that
θd(στσ−1) = θd(τ)θ0(σ)d ,

which reduces to
στσ−1 = τθ0(σ)d

Now since the action of σ on 〈τ〉 is faithful, we must have στσ−1 = τk with k
of order t in (Z/pZ)×. This implies that θ0(σ)d has order t, and since θ0(σ) has
order t, it also implies that (d, t) = 1 (because θ0(σ)d has order t/(d, t)).

5. Remarks. For a fixed ground field, one may use a simple bound on wild
ramification subgroups [2, pg. 72] and the fact that t is at most p− 1 to compile
a list of all the possible ramification structures for the types of extensions dealt
with in this theorem. We also note that the theorem also holds (with the same
proof) for extensions of local fields.
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