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Abstract. We prove a conjecture of Siman Wong concerning octahedral Ga-
lois representations of prime power conductor.

1. Introduction

Let Q̄ denote an algebraic closure of Q, and write GQ = Gal(Q̄/Q). In this paper
a Galois representation is defined as a continuous representation ρ : GQ → GL(2,C).
It is well known that such a representation must have finite image. In fact, if
π : GL(2,C) → PGL(2,C) is the standard quotient map, ρ̃ = π ◦ ρ has an image
that is either cyclic or isomorphic to a dihedral group, A4, S4, or A5. A Galois
representation is said to be odd if it maps complex conjugation to a nonscalar
matrix, and is said to be even otherwise. Given a projective representation ρ̃ :
GQ → PGL(2,C), a lift of ρ̃ will be any Galois representation ρ : GQ → GL(2,C)
such that ρ̃ = π ◦ ρ.

A Galois representation is ramified at p if the image of an inertia group at p
under ρ is nontrivial. The conductor of a Galois representation is a product of
powers of primes at which it is ramified. For tamely ramified primes, the exponent
of p in this product is easily described: if we let GQ act on C2 via ρ, the exponent
of p in the conductor is the codimension of the fixed space of inertia at p. [3, p.
527]

Given a projective representation ρ̃ : GQ → PGL(2,C), Serre [4, §6.2] defines the
conductor of ρ̃ as a product over all primes p of local conductors. For each prime
p, let ρ̃p = ρ̃|Dp

be the restriction of ρ̃ to a decomposition group at p. The local
conductor at p is the minimum conductor of all lifts to GL(2,C) of ρ̃p. Each of
these local conductors is a power of p; for unramified primes the exponent is 0, and
for tamely ramified p the exponent is 1 if the image of ρ̃p is cyclic and 2 otherwise
[4, §6.3].

Because our Galois representations have domain GQ, we may also describe the
conductor of a projective representation ρ̃ as the minimum of the conductors of all
the lifts of ρ̃ [4, §6.2].

Serre [4] classified all odd projective Galois representations of prime conductor,
and Vignéras [6] classified all even projective representations of prime conductor.
More recently, Siman Wong [7] studied octahedral representations (representations
with projective image isomorphic to S4) of prime power conductor and made the
following conjecture about these representations:
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Theorem 1.1. [7, Conjecture 2] Let K4/Q be an S4-quartic field such that |dK4
|

is a power of a prime p > 3. Let K3/Q be a cubic subfield of the Galois closure of
K4/Q. Denote by ρ̃ the projective 2-dimensional Artin representation associated to
K4/Q.

(1) Suppose K3/Q is totally real. If ρ̃ has conductor p2, then vp(dK4) = 1.
(2) Suppose K3/Q is not totally real. If ρ̃ has conductor p2 then vp(dK4

) = 3,
otherwise vp(dK4

) = 1.

In this paper, we apply techniques of Serre to prove Wong’s conjecture (see
Section 3).

2. Background

For a number field K, we will denote the discriminant of K by dK . We note
that Stickelberger’s criterion [1, p. 67] implies that for any number field K, dK is
congruent to 0 or 1 modulo 4. All discriminants that we consider will be odd, so
we will always have dK ≡ 1 (mod 4).

Throughout this paper, K4/Q will denote a field extension of degree 4 with
Galois group S4 and discriminant a power of a prime p > 3. We will denote by
K3/Q a cubic subextension of the splitting field of K4/Q.

Given K4/Q, there will be an associated projective Galois representation ρ̃ :
GQ → PGL(2,C) with image isomorphic to S4. Since K4 is ramified only at p, ρ̃
will be ramified only at p and (since it must be tamely ramified) will have conductor
p or p2. In many cases, the following lemmas will help us to determine the conductor
of ρ̃. Note that we call a projective representation ρ̃ odd if the image of complex
conjugation is nontrivial (i.e. if every lift ρ of ρ̃ is odd).

Lemma 2.1 (Serre). [4, p. 248] Let ρ̃ be any 2-dimensional projective representa-
tion of GQ, and p any prime number. Let ip = |ρ̃(Ip)|, where Ip denotes the inertia
group at p. Assume that ip is prime to p and ip ≥ 3. Then the conductor of ρ̃ is
exactly divisible by p if and only if ip|(p− 1).

Theorem 2.2 (Serre). [4, Theorem 8] Let K4/Q be an S4-quartic field such that
|dK4 | is a power of a single prime p ≡ 3 (mod 4). Denote by ρ̃ the projective 2-
dimensional Artin representation associated to K4/Q, and assume that ρ̃ is odd.
Then ρ̃ has conductor p if and only if dK4

= −p.

Wong’s conjecture [7, Conjecture 2] relates the p-adic valuation of the conductor
of ρ̃ to the p-adic valuation of dK4

. Lemma 2.3 demonstrates that the only possible
values vp(dK4

) can take are 1 and 3.

Lemma 2.3. Let K4/Q be an S4-quartic field such that |dK4 | is a power of a prime
p > 3. Denote by ep the ramification index of any prime lying over p in the splitting
field of K4/Q. Then vp(dK4

) is either 1 (and ep = 2) or 3 (and ep = 4).

Proof. If there are g primes above p and each has ramification index ei and inertial
degree fi, we know that 4 = e1f1+· · ·+egfg [2, p. 65]. Since the extension is tamely
ramified, we have vp(dK4

) = (e1 − 1)f1 + · · ·+ (eg − 1)fg [5, p. 58]. The following
table shows all possible splitting of pOK4

with ramification, and corresponding
discriminants. All fi = 1 unless otherwise noted.
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Factorization of pOK4
vp(dK4

)
e1 = 2, e2 = e3 = 1 1
e1 = 2, f1 = 2 2
e1 = 3, e2 = 1 2
e1 = e2 = 2 2
e1 = 4 3

Since p2 ≡ 1 (mod 4), vp(dK4) = 2 implies that dK4 = p2 by Stickelberger’s crite-
rion, and Gal(K4/Q) will be a subgroup of A4, which is not permitted. Hence, we
have that vp(dK4

) is 1 or 3, and we obtain the values of ep from the table. �

Wong’s conjecture involves determining whether the cubic subfield K3/Q con-
tained in the Galois closure of K4/Q is totally real or complex. The following
Lemma interprets this information only in terms of p mod 4.

Lemma 2.4. Let K3/Q be a cubic field extension with Galois group S3, ramified
only at a prime p > 3. Then K3 is totally real if and only if p ≡ 1 (mod 4).

Proof. Let p∗ = (−1)(p−1)/2p. Then p∗ ≡ 1 (mod 4). Denote by L the splitting
field of K3/Q, and by K2 the unique quadratic subfield of L. Then K2 = Q(

√
p∗)

is real quadratic if p ≡ 1 (mod 4) (i.e. p∗ > 0), and imaginary quadratic if p ≡ 3
(mod 4) (i.e. p∗ < 0). Since L/K2 has odd degree, L is totally real if and only if
K2 is. �

3. Proof of the Conjecture

Proof of Theorem 1.1: Assume that K3/Q is totally real and that vp(dK4) 6= 1.
Then by Lemma 2.4, p ≡ 1 (mod 4) and by Lemma 2.3 and Stickelberger’s criterion,
dK4

= p3 and ep = 4. Since ep ≥ 3 and ep | (p − 1), Lemma 2.1 implies that the
conductor of ρ̃ is p, proving (1).

Next, suppose that K3/Q is not totally real and vp(dK4
) 6= 3. Then p ≡ 3

(mod 4), vp(dK4) = 1, and dK4 = −p with ep = 2. By Theorem 2.2, ρ̃ has
conductor p, and (2) is proven. �
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