PROOF OF A CONJECTURE OF WONG CONCERNING OCTAHEDRAL GALOIS REPRESENTATIONS OF PRIME POWER CONDUCTOR

KEVIN CHILDERS AND DARRIN DOUD

ABSTRACT. We prove a conjecture of Siman Wong concerning octahedral Galois representations of prime power conductor.

1. INTRODUCTION

Let \mathbb{Q} denote an algebraic closure of \mathbb{Q} , and write $G_{\mathbb{Q}} = \operatorname{Gal}(\mathbb{Q}/\mathbb{Q})$. In this paper a Galois representation is defined as a continuous representation $\rho : G_{\mathbb{Q}} \to \operatorname{GL}(2, \mathbb{C})$. It is well known that such a representation must have finite image. In fact, if $\pi : \operatorname{GL}(2, \mathbb{C}) \to \operatorname{PGL}(2, \mathbb{C})$ is the standard quotient map, $\tilde{\rho} = \pi \circ \rho$ has an image that is either cyclic or isomorphic to a dihedral group, A_4 , S_4 , or A_5 . A Galois representation is said to be odd if it maps complex conjugation to a nonscalar matrix, and is said to be even otherwise. Given a projective representation $\tilde{\rho} : G_{\mathbb{Q}} \to \operatorname{PGL}(2, \mathbb{C})$, a lift of $\tilde{\rho}$ will be any Galois representation $\rho : G_{\mathbb{Q}} \to \operatorname{GL}(2, \mathbb{C})$ such that $\tilde{\rho} = \pi \circ \rho$.

A Galois representation is ramified at p if the image of an inertia group at punder ρ is nontrivial. The conductor of a Galois representation is a product of powers of primes at which it is ramified. For tamely ramified primes, the exponent of p in this product is easily described: if we let $G_{\mathbb{Q}}$ act on \mathbb{C}^2 via ρ , the exponent of p in the conductor is the codimension of the fixed space of inertia at p. [3, p. 527]

Given a projective representation $\tilde{\rho} : G_{\mathbb{Q}} \to \text{PGL}(2, \mathbb{C})$, Serre [4, §6.2] defines the conductor of $\tilde{\rho}$ as a product over all primes p of local conductors. For each prime p, let $\tilde{\rho}_p = \tilde{\rho}|_{D_p}$ be the restriction of $\tilde{\rho}$ to a decomposition group at p. The local conductor at p is the minimum conductor of all lifts to $\text{GL}(2,\mathbb{C})$ of $\tilde{\rho}_p$. Each of these local conductors is a power of p; for unramified primes the exponent is 0, and for tamely ramified p the exponent is 1 if the image of $\tilde{\rho}_p$ is cyclic and 2 otherwise [4, §6.3].

Because our Galois representations have domain $G_{\mathbb{Q}}$, we may also describe the conductor of a projective representation $\tilde{\rho}$ as the minimum of the conductors of all the lifts of $\tilde{\rho}$ [4, §6.2].

Serre [4] classified all odd projective Galois representations of prime conductor, and Vignéras [6] classified all even projective representations of prime conductor. More recently, Siman Wong [7] studied octahedral representations (representations with projective image isomorphic to S_4) of prime power conductor and made the following conjecture about these representations:

Date: February 5, 2015.

Theorem 1.1. [7, Conjecture 2] Let K_4/\mathbb{Q} be an S_4 -quartic field such that $|d_{K_4}|$ is a power of a prime p > 3. Let K_3/\mathbb{Q} be a cubic subfield of the Galois closure of K_4/\mathbb{Q} . Denote by $\tilde{\rho}$ the projective 2-dimensional Artin representation associated to K_4/\mathbb{Q} .

- (1) Suppose K_3/\mathbb{Q} is totally real. If $\tilde{\rho}$ has conductor p^2 , then $v_p(d_{K_4}) = 1$.
- (2) Suppose K_3/\mathbb{Q} is not totally real. If $\tilde{\rho}$ has conductor p^2 then $v_p(d_{K_4}) = 3$, otherwise $v_p(d_{K_4}) = 1$.

In this paper, we apply techniques of Serre to prove Wong's conjecture (see Section 3).

2. Background

For a number field K, we will denote the discriminant of K by d_K . We note that Stickelberger's criterion [1, p. 67] implies that for any number field K, d_K is congruent to 0 or 1 modulo 4. All discriminants that we consider will be odd, so we will always have $d_K \equiv 1 \pmod{4}$.

Throughout this paper, K_4/\mathbb{Q} will denote a field extension of degree 4 with Galois group S_4 and discriminant a power of a prime p > 3. We will denote by K_3/\mathbb{Q} a cubic subextension of the splitting field of K_4/\mathbb{Q} .

Given K_4/\mathbb{Q} , there will be an associated projective Galois representation $\tilde{\rho}$: $G_{\mathbb{Q}} \to \mathrm{PGL}(2,\mathbb{C})$ with image isomorphic to S_4 . Since K_4 is ramified only at p, $\tilde{\rho}$ will be ramified only at p and (since it must be tamely ramified) will have conductor p or p^2 . In many cases, the following lemmas will help us to determine the conductor of $\tilde{\rho}$. Note that we call a projective representation $\tilde{\rho}$ odd if the image of complex conjugation is nontrivial (i.e. if every lift ρ of $\tilde{\rho}$ is odd).

Lemma 2.1 (Serre). [4, p. 248] Let $\tilde{\rho}$ be any 2-dimensional projective representation of $G_{\mathbb{Q}}$, and p any prime number. Let $i_p = |\tilde{\rho}(I_p)|$, where I_p denotes the inertia group at p. Assume that i_p is prime to p and $i_p \geq 3$. Then the conductor of $\tilde{\rho}$ is exactly divisible by p if and only if $i_p|(p-1)$.

Theorem 2.2 (Serre). [4, Theorem 8] Let K_4/\mathbb{Q} be an S_4 -quartic field such that $|d_{K_4}|$ is a power of a single prime $p \equiv 3 \pmod{4}$. Denote by $\tilde{\rho}$ the projective 2dimensional Artin representation associated to K_4/\mathbb{Q} , and assume that $\tilde{\rho}$ is odd. Then $\tilde{\rho}$ has conductor p if and only if $d_{K_4} = -p$.

Wong's conjecture [7, Conjecture 2] relates the *p*-adic valuation of the conductor of $\tilde{\rho}$ to the *p*-adic valuation of d_{K_4} . Lemma 2.3 demonstrates that the only possible values $v_p(d_{K_4})$ can take are 1 and 3.

Lemma 2.3. Let K_4/\mathbb{Q} be an S_4 -quartic field such that $|d_{K_4}|$ is a power of a prime p > 3. Denote by e_p the ramification index of any prime lying over p in the splitting field of K_4/\mathbb{Q} . Then $v_p(d_{K_4})$ is either 1 (and $e_p = 2$) or 3 (and $e_p = 4$).

Proof. If there are g primes above p and each has ramification index e_i and inertial degree f_i , we know that $4 = e_1 f_1 + \cdots + e_g f_g$ [2, p. 65]. Since the extension is tamely ramified, we have $v_p(d_{K_4}) = (e_1 - 1)f_1 + \cdots + (e_g - 1)f_g$ [5, p. 58]. The following table shows all possible splitting of $p\mathcal{D}_{K_4}$ with ramification, and corresponding discriminants. All $f_i = 1$ unless otherwise noted.

Factorization of $p\mathfrak{O}_{K_4}$	$v_p(d_{K_4})$
$e_1 = 2, e_2 = e_3 = 1$	1
$e_1 = 2, f_1 = 2$	2
$e_1 = 3, e_2 = 1$	2
$e_1 = e_2 = 2$	2
$e_1 = 4$	3

Since $p^2 \equiv 1 \pmod{4}$, $v_p(d_{K_4}) = 2$ implies that $d_{K_4} = p^2$ by Stickelberger's criterion, and $\operatorname{Gal}(K_4/\mathbb{Q})$ will be a subgroup of A_4 , which is not permitted. Hence, we have that $v_p(d_{K_4})$ is 1 or 3, and we obtain the values of e_p from the table. \Box

Wong's conjecture involves determining whether the cubic subfield K_3/\mathbb{Q} contained in the Galois closure of K_4/\mathbb{Q} is totally real or complex. The following Lemma interprets this information only in terms of $p \mod 4$.

Lemma 2.4. Let K_3/\mathbb{Q} be a cubic field extension with Galois group S_3 , ramified only at a prime p > 3. Then K_3 is totally real if and only if $p \equiv 1 \pmod{4}$.

Proof. Let $p^* = (-1)^{(p-1)/2}p$. Then $p^* \equiv 1 \pmod{4}$. Denote by L the splitting field of K_3/\mathbb{Q} , and by K_2 the unique quadratic subfield of L. Then $K_2 = \mathbb{Q}(\sqrt{p^*})$ is real quadratic if $p \equiv 1 \pmod{4}$ (i.e. $p^* > 0$), and imaginary quadratic if $p \equiv 3 \pmod{4}$ (i.e. $p^* < 0$). Since L/K_2 has odd degree, L is totally real if and only if K_2 is.

3. Proof of the Conjecture

Proof of Theorem 1.1: Assume that K_3/\mathbb{Q} is totally real and that $v_p(d_{K_4}) \neq 1$. Then by Lemma 2.4, $p \equiv 1 \pmod{4}$ and by Lemma 2.3 and Stickelberger's criterion, $d_{K_4} = p^3$ and $e_p = 4$. Since $e_p \geq 3$ and $e_p \mid (p-1)$, Lemma 2.1 implies that the conductor of $\tilde{\rho}$ is p, proving (1).

Next, suppose that K_3/\mathbb{Q} is not totally real and $v_p(d_{K_4}) \neq 3$. Then $p \equiv 3 \pmod{4}$, $v_p(d_{K_4}) = 1$, and $d_{K_4} = -p$ with $e_p = 2$. By Theorem 2.2, $\tilde{\rho}$ has conductor p, and (2) is proven.

References

- Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1994.
- [2] Daniel A. Marcus. Number fields. Springer-Verlag, New York-Heidelberg, 1977. Universitext.
- [3] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1999.
- [4] J.-P. Serre. Modular forms of weight one and Galois representations. In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 193–268. Academic Press, London, 1977.
- [5] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg.
- [6] M.-F. Vignéras. Représentations galoisiennes paires. Glasgow Math. J., 27:223–237, 1985.
- [7] Siman Wong. Arithmetic of octahedral sextics. J. Number Theory, 145:245–272, 2014.

DEPARTMENT OF MATHEMATICS, BRIGHAM YOUNG UNIVERSITY, PROVO, UT 84602 *E-mail address*: kevinrchilders@gmail.com

DEPARTMENT OF MATHEMATICS, BRIGHAM YOUNG UNIVERSITY, PROVO, UT 84602 *E-mail address*: doud@math.byu.edu