PROOF OF A CONJECTURE OF WONG CONCERNING OCTAHEDRAL GALOIS REPRESENTATIONS OF PRIME POWER CONDUCTOR

KEVIN CHILDERS AND DARRIN DOUD

Abstract

We prove a conjecture of Siman Wong concerning octahedral Galois representations of prime power conductor.

1. Introduction

Let $\overline{\mathbb{Q}}$ denote an algebraic closure of \mathbb{Q}, and write $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. In this paper a Galois representation is defined as a continuous representation $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(2, \mathbb{C})$. It is well known that such a representation must have finite image. In fact, if $\pi: \mathrm{GL}(2, \mathbb{C}) \rightarrow \mathrm{PGL}(2, \mathbb{C})$ is the standard quotient map, $\tilde{\rho}=\pi \circ \rho$ has an image that is either cyclic or isomorphic to a dihedral group, A_{4}, S_{4}, or A_{5}. A Galois representation is said to be odd if it maps complex conjugation to a nonscalar matrix, and is said to be even otherwise. Given a projective representation $\tilde{\rho}$: $G_{\mathbb{Q}} \rightarrow \operatorname{PGL}(2, \mathbb{C})$, a lift of $\tilde{\rho}$ will be any Galois representation $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(2, \mathbb{C})$ such that $\tilde{\rho}=\pi \circ \rho$.

A Galois representation is ramified at p if the image of an inertia group at p under ρ is nontrivial. The conductor of a Galois representation is a product of powers of primes at which it is ramified. For tamely ramified primes, the exponent of p in this product is easily described: if we let $G_{\mathbb{Q}}$ act on \mathbb{C}^{2} via ρ, the exponent of p in the conductor is the codimension of the fixed space of inertia at $p .[3, \mathrm{p}$. 527]

Given a projective representation $\tilde{\rho}: G_{\mathbb{Q}} \rightarrow \operatorname{PGL}(2, \mathbb{C})$, Serre $[4, \S 6.2]$ defines the conductor of $\tilde{\rho}$ as a product over all primes p of local conductors. For each prime p, let $\tilde{\rho}_{p}=\left.\tilde{\rho}\right|_{D_{p}}$ be the restriction of $\tilde{\rho}$ to a decomposition group at p. The local conductor at p is the minimum conductor of all lifts to $\operatorname{GL}(2, \mathbb{C})$ of $\tilde{\rho}_{p}$. Each of these local conductors is a power of p; for unramified primes the exponent is 0 , and for tamely ramified p the exponent is 1 if the image of $\tilde{\rho}_{p}$ is cyclic and 2 otherwise [4, §6.3].

Because our Galois representations have domain $G_{\mathbb{Q}}$, we may also describe the conductor of a projective representation $\tilde{\rho}$ as the minimum of the conductors of all the lifts of $\tilde{\rho}[4, \S 6.2]$.

Serre [4] classified all odd projective Galois representations of prime conductor, and Vignéras [6] classified all even projective representations of prime conductor. More recently, Siman Wong [7] studied octahedral representations (representations with projective image isomorphic to S_{4}) of prime power conductor and made the following conjecture about these representations:

[^0]Theorem 1.1. [7, Conjecture 2] Let K_{4} / \mathbb{Q} be an S_{4}-quartic field such that $\left|d_{K_{4}}\right|$ is a power of a prime $p>3$. Let K_{3} / \mathbb{Q} be a cubic subfield of the Galois closure of K_{4} / \mathbb{Q}. Denote by $\tilde{\rho}$ the projective 2-dimensional Artin representation associated to K_{4} / \mathbb{Q}.
(1) Suppose K_{3} / \mathbb{Q} is totally real. If $\tilde{\rho}$ has conductor p^{2}, then $v_{p}\left(d_{K_{4}}\right)=1$.
(2) Suppose K_{3} / \mathbb{Q} is not totally real. If $\tilde{\rho}$ has conductor p^{2} then $v_{p}\left(d_{K_{4}}\right)=3$, otherwise $v_{p}\left(d_{K_{4}}\right)=1$.

In this paper, we apply techniques of Serre to prove Wong's conjecture (see Section 3).

2. BACKGROUND

For a number field K, we will denote the discriminant of K by d_{K}. We note that Stickelberger's criterion [1, p. 67] implies that for any number field K, d_{K} is congruent to 0 or 1 modulo 4 . All discriminants that we consider will be odd, so we will always have $d_{K} \equiv 1(\bmod 4)$.

Throughout this paper, K_{4} / \mathbb{Q} will denote a field extension of degree 4 with Galois group S_{4} and discriminant a power of a prime $p>3$. We will denote by K_{3} / \mathbb{Q} a cubic subextension of the splitting field of K_{4} / \mathbb{Q}.

Given K_{4} / \mathbb{Q}, there will be an associated projective Galois representation $\tilde{\rho}$: $G_{\mathbb{Q}} \rightarrow \operatorname{PGL}(2, \mathbb{C})$ with image isomorphic to S_{4}. Since K_{4} is ramified only at $p, \tilde{\rho}$ will be ramified only at p and (since it must be tamely ramified) will have conductor p or p^{2}. In many cases, the following lemmas will help us to determine the conductor of $\tilde{\rho}$. Note that we call a projective representation $\tilde{\rho}$ odd if the image of complex conjugation is nontrivial (i.e. if every lift ρ of $\tilde{\rho}$ is odd).

Lemma 2.1 (Serre). [4, p. 248] Let $\tilde{\rho}$ be any 2-dimensional projective representation of $G_{\mathbb{Q}}$, and p any prime number. Let $i_{p}=\left|\tilde{\rho}\left(I_{p}\right)\right|$, where I_{p} denotes the inertia group at p. Assume that i_{p} is prime to p and $i_{p} \geq 3$. Then the conductor of $\tilde{\rho}$ is exactly divisible by p if and only if $i_{p} \mid(p-1)$.

Theorem 2.2 (Serre). [4, Theorem 8] Let K_{4} / \mathbb{Q} be an S_{4}-quartic field such that $\left|d_{K_{4}}\right|$ is a power of a single prime $p \equiv 3(\bmod 4)$. Denote by $\tilde{\rho}$ the projective 2 dimensional Artin representation associated to K_{4} / \mathbb{Q}, and assume that $\tilde{\rho}$ is odd. Then $\tilde{\rho}$ has conductor p if and only if $d_{K_{4}}=-p$.

Wong's conjecture [7, Conjecture 2] relates the p-adic valuation of the conductor of $\tilde{\rho}$ to the p-adic valuation of $d_{K_{4}}$. Lemma 2.3 demonstrates that the only possible values $v_{p}\left(d_{K_{4}}\right)$ can take are 1 and 3 .

Lemma 2.3. Let K_{4} / \mathbb{Q} be an S_{4}-quartic field such that $\left|d_{K_{4}}\right|$ is a power of a prime $p>3$. Denote by e_{p} the ramification index of any prime lying over p in the splitting field of K_{4} / \mathbb{Q}. Then $v_{p}\left(d_{K_{4}}\right)$ is either 1 (and $e_{p}=2$) or 3 (and $e_{p}=4$).

Proof. If there are g primes above p and each has ramification index e_{i} and inertial degree f_{i}, we know that $4=e_{1} f_{1}+\cdots+e_{g} f_{g}[2$, p. 65]. Since the extension is tamely ramified, we have $v_{p}\left(d_{K_{4}}\right)=\left(e_{1}-1\right) f_{1}+\cdots+\left(e_{g}-1\right) f_{g}$ [5, p. 58]. The following table shows all possible splitting of $p \mathfrak{O}_{K_{4}}$ with ramification, and corresponding discriminants. All $f_{i}=1$ unless otherwise noted.

Factorization of $p \mathfrak{O}_{K_{4}}$	$v_{p}\left(d_{K_{4}}\right)$
$e_{1}=2, e_{2}=e_{3}=1$	1
$e_{1}=2, f_{1}=2$	2
$e_{1}=3, e_{2}=1$	2
$e_{1}=e_{2}=2$	2
$e_{1}=4$	3

Since $p^{2} \equiv 1(\bmod 4), v_{p}\left(d_{K_{4}}\right)=2$ implies that $d_{K_{4}}=p^{2}$ by Stickelberger's criterion, and $\operatorname{Gal}\left(K_{4} / \mathbb{Q}\right)$ will be a subgroup of A_{4}, which is not permitted. Hence, we have that $v_{p}\left(d_{K_{4}}\right)$ is 1 or 3 , and we obtain the values of e_{p} from the table.

Wong's conjecture involves determining whether the cubic subfield K_{3} / \mathbb{Q} contained in the Galois closure of K_{4} / \mathbb{Q} is totally real or complex. The following Lemma interprets this information only in terms of $p \bmod 4$.
Lemma 2.4. Let K_{3} / \mathbb{Q} be a cubic field extension with Galois group S_{3}, ramified only at a prime $p>3$. Then K_{3} is totally real if and only if $p \equiv 1(\bmod 4)$.
Proof. Let $p^{*}=(-1)^{(p-1) / 2} p$. Then $p^{*} \equiv 1(\bmod 4)$. Denote by L the splitting field of K_{3} / \mathbb{Q}, and by K_{2} the unique quadratic subfield of L. Then $K_{2}=\mathbb{Q}\left(\sqrt{p^{*}}\right)$ is real quadratic if $p \equiv 1(\bmod 4)$ (i.e. $p^{*}>0$), and imaginary quadratic if $p \equiv 3$ $(\bmod 4)\left(\right.$ i.e. $\left.p^{*}<0\right)$. Since L / K_{2} has odd degree, L is totally real if and only if K_{2} is.

3. Proof of the Conjecture

Proof of Theorem 1.1: Assume that K_{3} / \mathbb{Q} is totally real and that $v_{p}\left(d_{K_{4}}\right) \neq 1$. Then by Lemma $2.4, p \equiv 1(\bmod 4)$ and by Lemma 2.3 and Stickelberger's criterion, $d_{K_{4}}=p^{3}$ and $e_{p}=4$. Since $e_{p} \geq 3$ and $e_{p} \mid(p-1)$, Lemma 2.1 implies that the conductor of $\tilde{\rho}$ is p, proving (1).

Next, suppose that K_{3} / \mathbb{Q} is not totally real and $v_{p}\left(d_{K_{4}}\right) \neq 3$. Then $p \equiv 3$ $(\bmod 4), v_{p}\left(d_{K_{4}}\right)=1$, and $d_{K_{4}}=-p$ with $e_{p}=2$. By Theorem 2.2, $\tilde{\rho}$ has conductor p, and (2) is proven.

References

[1] Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. SpringerVerlag, New York, second edition, 1994.
[2] Daniel A. Marcus. Number fields. Springer-Verlag, New York-Heidelberg, 1977. Universitext.
[3] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1999.
[4] J.-P. Serre. Modular forms of weight one and Galois representations. In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 193-268. Academic Press, London, 1977.
[5] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg.
[6] M.-F. Vignéras. Représentations galoisiennes paires. Glasgow Math. J., 27:223-237, 1985.
[7] Siman Wong. Arithmetic of octahedral sextics. J. Number Theory, 145:245-272, 2014.
Department of Mathematics, Brigham Young University, Provo, UT 84602
E-mail address: kevinrchilders@gmail.com
Department of Mathematics, Brigham Young University, Provo, UT 84602
E-mail address: doud@math.byu.edu

[^0]: Date: February 5, 2015.

