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Abstract. We prove the following theorem: Let F be an algebraic closure
of a finite field of characteristic p > 3. Let ρ be a continuous homomorphism

from the absolute Galois group of Q to GL(3,F) which is isomorphic to a direct

sum of a character and a two-dimensional odd irreducible representation. We
assume that the image of ρ is contained in the intersection of the stabilizers of

the line spanned by e2 and the plane spanned by e1, e3, where ei denotes the

standard basis. Such ρ will not satisfy the strict parity conditions of [4]. Under
the conditions that the Serre conductor of ρ is squarefree, that the predicted

weight (a, b, c) lies in the lowest alcove, and that c 6≡ b+1 (mod p−1), we prove

that ρ is attached to a Hecke eigenclass in H2(Γ,M), where Γ is a subgroup
of finite index in SL(3,Z) and M is an FΓ-module. The particular Γ and M

are as predicted by the main conjecture of [4], minus the requirement for strict

parity.

1. Introduction

In our generalization of Serre’s conjecture in [4], we stipulated a parity condition
stronger than mere “oddness” on a given reducible Galois representation. This was
called “strict parity.” As we explain further below, we incorporated this condition
in our generalized conjecture on the basis of experimental evidence for GL(3). We
now believe that this evidence was too partial, and that strict parity is not necessary
for these Galois representations to be modular. In this paper we show that this
is in fact true for a large class of reducible 3-dimensional Galois representations.
The problem with our experiments was that they were restricted to the top non-
vanishing homological degree.

Fix a prime p > 3 and fix an algebraic closure F of Fp. In this paper, a Galois
representation ρ : GQ → GL(n,F) is a continuous, semisimple representation of
the absolute Galois group of Q, considered as a specific homomorphism. A Galois
representation will be called odd if the number of positive and negative eigenvalues
of complex conjugation differ by at most one (if p > (n + 1), we can state this by
saying that the trace of the image of complex conjugation is 0 or ±1). General-
izations of Serre’s conjecture [18] connect the homology of arithmetic subgroups of
GL(n,Z) with odd Galois representations ρ : GQ → GL(n,F). Such a conjecture
was first published in [6], was extended in [4], and further improved in [12].
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Note should be taken of the recent spectacular work of Peter Scholze [17], which
is a converse to these conjectures. Namely (conditional on stabilization of the
twisted trace formula) he proves that any system of Hecke eigenvalues occurring
in the mod p cohomology of a congruence subgroup of GL(n,Z) has an attached
Galois representation. The Serre type conjectures in the previous paragraph are
still open and presumably even harder to prove than Scholze’s result. However,
Scholze’s theorem gives additional reason to believe the conjectures to be true.

In this paper, we will examine the conjecture of [4] for Galois representations ρ
which are isomorphic to τ ⊕ ψ, where τ : GQ → GL(2,F) is an odd representation,
and ψ : GQ → GL(1,F) is a character. For a reducible representation such as ρ,
the weights predicted by the main conjecture of [4] depend on choosing conjugates
of ρ which have image in one of the three standard (2, 1)-Levi subgroups:

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 ,

∗ 0 0
0 ∗ ∗
0 ∗ ∗

 , and

∗ 0 ∗
0 ∗ 0
∗ 0 ∗

 .

We will call the third of these standard Levi subgroups the medial Levi subgroup,
and we will say that a conjugate of ρ is a medial embedding if its image is contained
inside the medial Levi subgroup.

A representation ρ with image inside one of the standard Levi subgroups is said
to satisfy strict parity if it can be conjugated inside the Levi subgroup in such a way
that the image of complex conjugation has alternating signs on the diagonal. For
ρ = τ⊕ψ as above, with τ odd and irreducible, it is easy to see that a conjugate of ρ
satisfies strict parity if it has image in either of the first two Levi subgroups. Hence,
[4, Conj. 3.1] predicts certain weights for ρ, and [4] gives numerous computational
examples of ρ which appear to correspond to eigenclasses in H3(Γ,Mε), where Γ, M ,
and the nebentype ε are determined by ρ. The conjecture for these cases is proven
in [3] under the condition that the Serre conductor of ρ is squarefree. However, for
ρ of the form that we consider it is easy to see that strict parity can not be satisfied
by any conjugate of ρ with image in the medial Levi subgroup, so [4, Conj. 3.1]
makes no prediction of a weight arising from a medial embedding. In this paper, we
will show that if the Serre conductor of ρ is squarefree, M = F (a, b, c) is a weight
with c 6≡ b + 1 (mod p − 1) that would be predicted from a medial embedding
except for strict parity, and M is in the lowest alcove (see Definition 2.5), then
the conjecture is true, in that ρ corresponds to an element of H2(Γ,Mε), where Γ,
M , and ε are as predicted by the conjecture. We expect similar results to hold for
p-restricted M outside the lowest alcove, but have as yet been unable to prove a
suitable form of Kostant’s theorem for this case.

The strict parity condition was postulated in order to explain the relationship
between reducible Galois representations and cohomology based on computations
done exclusively for H3(Γ,M), where Γ is a congruence subgroup of GL(3,Z). Also,
in [2] strict parity was found to be necessary to verify the conjecture that a Galois
representation ρ into GL(n,Z) that was a sum of n characters, for any n, should be
attached to a homology class in the “top” dimension n(n − 1)/2. We believe that
we were led to invoke the strict parity condition because up until now we have only
computed the homology in the top dimension. The results of this paper indicate
that, had computations originally been done in H2 as well as H3 for GL(3,Z), the
strict parity condition would never have arisen in our minds. It is noteworthy that
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the strict parity condition was occasionally violated for H3 in the computations of
[4]; in that a weight that would otherwise be predicted for ρ except for the strict
parity condition yielded a system of eigenvalues with ρ apparently attached. We
do not have enough computational basis to guess a rule for when this happens.
The point of the present paper is that we now tend to think we should scrap the
strict parity condition entirely if we look at the direct sum of the cohomology in all
degrees. On the other hand, there may well be some kind of strict parity condition
for GL(n,Z) if we fix our attention on a single degree of cohomology.

We use the method of our previous paper [3] suitably adapted. We use the
same resolution of Z by GL(3,Q)-modules created by splicing together the sharbly
resolution with a resolution involving modules induced from parabolic subgroups.
Because we are now looking at H2 rather than H3, we need to look at stabilizers
of planes, as well as lines, in GL(3). These preliminaries are in Section 3. For the
same reason, we need to look much more carefully at the Hochschild-Serre spectral
sequence for these stabilizers, taking the Hecke action into account. This is done in
section 4. The main new ingredient in this paper is a generalization of a theorem of
Kostant due to Polo and Tilouine [16, Corollary 3.8, pg. 128] (see also [11, Section
7] and [19]). This is found in section 5. Sections 6 and 7 contain the body of the
proof of our main theorem, which is Theorem 2.6, whose background is given in
section 2. In the last section of the current paper, we include several corrections
for [3].

We thank Elmar Große-Klönne for answering our questions about his paper [11],
and Brian Boe for answering our questions about [19].

2. Attached Galois representations and arithmetic cohomology

We use the following groups and semigroups in GLn(Q).

Definition 2.1. Let N be a positive integer.

(1) S0(n,N)± is the semigroup of matrices s ∈ Mn(Z) such that det(s) is
relatively prime to pN and the first row of s is congruent to (∗, 0, . . . , 0)
modulo N .

(2) S0(n,N) is the subsemigroup of s ∈ S0(n,N)± such that det(s) > 0.
(3) Γ0(n,N)± = S0(n,N)± ∩GL(n,Z).
(4) Γ0(n,N) = S0(n,N) ∩GL(n,Z).

Let Hn,N (a Hecke algebra) be the (commutative) Z-algebra under convolution
generated by all the double cosets T (`, k) = Γ0(n,N)D(`, k)Γ0(n,N) with

D`,k = diag(1, · · · , 1︸ ︷︷ ︸
n−k

, `, · · · , `︸ ︷︷ ︸
k

).

such that ` - pN .
An algebra homomorphism φ : Hn,N → F will be called a Hecke packet. For

example, if W is an Hn,N ⊗F-module, and w ∈W is a simultaneous eigenvector for
all T ∈ Hn,N , then the associated eigenvalues give a Hecke packet, called a Hecke
eigenpacket that “occurs” or “appears” in W .

Definition 2.2. Let φ be a Hecke packet, with φ(T (`, k)) = a(`, k). We say that
the Galois representation ρ : GQ → GL(n,F) is attached to φ if ρ is unramified
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outside pN and

det(I − ρ(Frob`)X) =

n∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk

for all prime ` - pN .
If the Hecke packet comes from a Hecke eigenvector w ∈ W , where W is an

F-vector space on which Hn,N acts, we will say ρ is attached to w and fits W .

(We use the arithmetic Frobenius, so that if ω is the cyclotomic character, ω(Frob`) =
`.)

If ρ is attached to φ, the characteristic polynomials of ρ(Frob`) for almost all
prime ` are determined by φ and hence ρ is determined up to isomorphism, since
we are assuming ρ is semisimple (see Section 1).

Definition 2.3. Let S be a subsemigroup of the matrices in GL(n,Q) with integer
entries whose determinants are prime to pN . A (p,N)-admissible S-module M is an
FS-module of the form M ′⊗FFχ, where M ′ is an FS-module on which S∩GL(n,Q)+

acts via its reduction mod p and χ is a character χ : S → F× which factors through
the reduction of S modulo N . Here Fχ = F⊗ χ.

We remark that the class of (p,N)-admissible S-modules is a subclass of the
class of admissible modules as defined in [1].

For p - N , given a character ε : GQ → F of conductor dividing N , we may
consider ε as a Dirichlet character modulo N . We then consider ε as a character
of S0(n,N) by defining, for s ∈ S0(n,N), ε(s) = ε(s11) to be the image under ε of
the (1, 1) entry of s (which must be a unit modulo N). Hence, we may define Mε

as M ⊗F Fε for any F[S0(n,N)]-module M .
If M is a (p,N)-admissible module, there is a natural action of a double coset

T (`, k) ∈ Hn,N on the homology H∗(Γ,M) and the cohomology H∗(Γ,M), and
we then refer to T (`, k) as a Hecke operator. This action makes H∗(Γ,M) and
H∗(Γ,M) into Hn,N -modules.

We now present a lemma that relates the fitting of a Galois representation to
one space to its fitting another space.

Lemma 2.4. Let Γ = Γ0(n,N) and M an irreducible (p,N)-admissible S0(n,N)-
module. Then ρ fits Hi(Γ,M) if and only if ρ fits Hi(Γ,M).

Proof. If (r, V ) is a representation of a group G that possesses an involution ι, let
(r∨, V ∨) denote its contragredient. That is, V ∨ = V as vector spaces and r∨(g) =
r(ι(g)). If (r, kn) is a matrix representation with k a ring, let (r∨, kn) denote its
contragredient. That is, r∨(g) = tr(g)−1. If E is an Hn,N -module on which the
scalar matrices act via a central character f , let E∨ denote its contragredient, that
is E = E∨ as vector spaces and ΓD`,kΓ acts on E∨ as f(`−1)Γ`D`−1,kΓ on E. It
will be clear from the context which contragredient we are using.

We take the contragredient of M with respect to the involution of Γ that sends
γ to h tγ−1h−1 where h = diag(N, 1, . . . , 1). Now [6, Prop. 2.8] says that ρ fits
Hi(Γ,M) if and only if ρ∨ ⊗ ωn−1 fits Hi(Γ,M∨). But using [8, Theorem 3.1] and
Kronecker duality, we see that Hi(Γ,M∨) = Hi(Γ,M)∨. As in [6, Prop. 2.8], one
checks that ρ∨ ⊗ ωn−1 fits Hi(Γ,M)∨ if and only if ρ fits Hi(Γ,M). �

Recall [10] that the irreducible F[GL(n,Fp)]-modules are parametrized by p-
restricted n-tuples; i.e. by n-tuples (a1, . . . , an) such that 0 ≤ ai − ai+1 ≤ p− 1 for
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i < n and 0 ≤ an ≤ p− 2. We will denote the module corresponding to the n-tuple
(a1, . . . , an) by F (a1, . . . , an). By allowing for twisting by the determinant character
(which has order p− 1), we can (and will) allow the value of an to be an arbitrary
integer, thus allowing a single module to be described by an infinite number of
different n-tuples. For a Levi subgroup L ∼= GL(1,Fp)×GL(2,Fp) ⊂ GL(3,Fp), we
will use the notation F (a; b, c) to denote the L-module F (a)⊗ F (b, c).

Several of our theorems (in particular Theorems 2.6, 5.1 and 7.1) will rely on
the following definition.

Definition 2.5. An irreducible GL(3,Fp)-module F (a, b, c) is in the lowest alcove
if 0 ≤ a− c ≤ p− 2.

In representation theoretic terms, what we have defined as the lowest alcove
corresponds to the “closure of the lowest alcove” or the closed lower alcove.

We now state our main theorem. The proof of Theorem 2.6 will be given in
section 7.

Theorem 2.6. Let τ : GQ → GL(2,F) and ψ : GQ → GL(1,F) be Galois represen-
tations, with τ odd and irreducible, and let ρ = τ ⊕ ψ. Let F (a, b, c) be a weight
predicted by [4, Theorem 3.1] for ρ from a medial embedding (disregarding the strict
parity condition). Let N be the Serre conductor of ρ and let ε be the nebentype of
ρ. Assume that N is squarefree. If F (a, b, c) is in the lowest alcove, and c 6≡ b+ 1
(mod p− 1), then ρ fits H2(Γ0(3, N), F (a, b, c)ε).

Remark 2.7. Since ρ is odd, the weights predicted for ρ from a medial embedding
will necessarily fail to satisfy strict parity, and hence would not be predicted by [4,
Conj 3.1]. Conjugates of the image of ρ in the other standard Levi subgroups would
have different predicted weights, and if we call one of these weights M , [3] proves
that ρ will fit H3(Γ0(3, N),Mε). Numerous computational examples appear in [4],
for weights that satisfy strict parity, but because that paper did not compute any
cohomology groups in degree 2 no computational examples of Theorem 2.6 appear.
It would be interesting to perform the computations of cohomology in degree 2, to
obtain examples of Theorem 2.6 to test cases when F (a, b, c) is not in the lowest
alcove.

3. Preliminary definitions

Let P be a Q-parabolic subgroup of GL(3) with unipotent radical U and set
L = P/U with the natural projection ψ : P → L. If A is a subset of GL(3,Q) write
AP = A∩ P,AU = A∩U , and AL = ψ(AP ). In case we use an explicit splitting of
L back to P , by abuse of notation we will also use L for the image of that splitting.

Let P0 be the stabilizer of the line spanned by (1, 0, 0) in affine 3-space, on which
GL(3) acts on the right. Then P0 = L1

0L
2
0U0 where

U0 =

1 0 0
∗ 1 0
∗ 0 1

 , L1
0 =

∗ 0 0
0 1 0
0 0 1

 , L2
0 =

1 0 0
0 ∗ ∗
0 ∗ ∗

 .

For g ∈ P0, define ψ1
0(g) ∈ GL(1) and ψ2

0(g) ∈ GL(2) by

g =

(
ψ1

0(g) 0
∗ ψ2

0(g)

)
.
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For any integer x let

gx =

1 x 0
0 1 0
0 0 1

 .

Define

Px = g−1
x P0gx, Ux = g−1

x U0gx, L1
x = g−1

x L1
0gx, L2

x = g−1
x L2

0gx.

For s ∈ Px, we set ψix(s) = ψi0(gxsg
−1
x ).

Theorem 3.1. Let P2(Q) be the projective space of lines in the vector space Q3 of
row vectors. Assume that N > 0 is squarefree. Then the Γ0(3, N)-orbits in P2(Q)
are in 1-1 correspondence with the set of positive divisors d of N where the orbit
corresponding to d contains zd = (1 : d : 0). These are also the S0(3, N)-orbits.
Moreover,

(1) The stabilizer of zd in GL(3,Q) equals Pd(Q).
(2) UdL

1
d ∩ Γ0(3, N) = Ud ∩ Γ0(3, N).

(3) If s ∈ Pd ∩ S0(3, N)±, then ψ1
d(s) ≡ s11 (mod d) and ψ2

d(s)11 ≡ s11

(mod N/d).
(4) ψ2

d(Pd ∩ S0(3, N)±) ⊂ S0(2, N/d)±.
(5) ψ2

d induces an exact sequence

1→ Ud ∩ Γ0(3, N)→ Pd ∩ Γ0(3, N)
ψ2

d−→Γ0(2, N/d)± → 1.

Proof. This follows from [3, Thm 4.1] and the discussion in the paragraph before
[3, Thm. 4.3]. �

Let P ′0 be the stabilizer of the plane spanned by (1, 0, 0) and (0, 1, 0) in affine
3-space on which GL(3) acts on the right. Then P ′0 = M2

0M
1
0U
′
0 where

U ′0 =

1 0 0
0 1 0
∗ ∗ 1

 , M2
0 =

∗ ∗ 0
∗ ∗ 0
0 0 1

 , M1
0 =

1 0 0
0 1 0
0 0 ∗

 .

For s ∈ P ′0, define θ1
0(s) ∈ GL(1) and θ2

0(s) ∈ GL(2) by

s =

(
θ2

0(s) 0
∗ θ1

0(s)

)
.

For any integer x, set

hx =

1 0 x
0 1 0
0 0 1

 .

Define

P ′x = h−1
x P ′0hx, U ′x = h−1

x U ′0hx, M1
x = h−1

x M1
0hx, M2

x = h−1
x M2

0hx.

For s ∈ P ′x we set θix(s) = θi0(hxsh
−1
x ) ∈ GL(i).

Theorem 3.2. Let N > 0 be a squarefree integer.

(1) The Γ0(3, N)-orbits of planes in Q3 are in 1-1 correspondence with the set
of positive divisors of N , where the orbit corresponding to the divisor d
contains the plane spanned by (1, 0, d) and (0, 1, 0). The Γ0(3, N)-orbits
are stable under the action of S0(3, N).

(2) The stabilizer of the plane corresponding to d is P ′d.
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(3) U ′dM
1
d ∩ Γ0(3, N) = U ′d ∩ Γ0(3, N).

(4) If s ∈ P ′d∩S0(3, N)±, then θ1
d ≡ s11 (mod N/d) and θ2

d(s)11 ≡ s11 (mod d).
(5) θ2

d(P
′
d ∩ S0(3, N)±) ⊂ S0(2, d)±.

(6) θ2
d induces an exact sequence

1→ U ′d ∩ Γ0(3, N)→ P ′d ∩ Γ0(3, N)
θ2d−→Γ0(2, d)± → 1.

Proof. The proof is similar to that of Theorem 3.1, and will be omitted. �

4. Hecke Actions on Hochschild-Serre spectral sequences

Let P = LU be a maximal Q-parabolic subgroup of G = GL(n), and let Γ be a
congruence subgroup of G(Z). Set ΓP = Γ ∩ P (Q), ΓU = Γ ∩ U(Q), ΓL = ψ(Γ) ⊂
L(Q). Let (Γ, S) be a Hecke pair [7, Section 1.1], and set SP = S ∩ P (Q). Let HP
denote the Hecke algebra of double cosets of the Hecke pair (ΓP , SP ).

We have a Hochschild-Serre spectral sequence:

E2
ij = Hi(ΓL, Hj(ΓU ,M))⇒ Hi+j(ΓP ,M).

We now explain why (at least under a certain hypothesis) this is HP -equivariant,
and how to compute the action of the Hecke operators on E2

ij .

Definition 4.1. Let T be the set of matrices t ∈ GL(n,Q) such that all denomina-
tors of both t and t−1 are prime to pN and let M be a (p,N)-admissible T -module.
Let C. be the standard resolution of Z over GL(n,Q) [9, I.5]. Set r equal to the
Q-dimension of U(Q). Assume that t ∈ T normalizes U(Q). Then we define an
action of t on C. ⊗ΓU

M by setting

(c⊗m) · t =
1

dr

∑
b

cubt⊗mubt (*)

where d ∈ Z is any integer such that the right conjugation action of t on ΓdU is
contained in ΓU , and {u1, . . . , udr} is a set of coset representatives for ΓdU inside
ΓU . As shown in Lemma 4.3 this action is well defined, and does not depend on
the choice of d or the choice of coset representatives.

Remark 4.2. Note that we are not claiming that this action of the individual
elements of T on the complex C ⊗ΓU

M extends to a semigroup action of T . We
will see that under a certain hypothesis it does yield a semigroup action on the
homology of the complex, however.

Lemma 4.3. The action of t ∈ T on the complex C ⊗ΓU
M satisfies the following

properties.

(1) For a fixed d and choice of {ub}, it is well defined.
(2) It does not depend on the choice of coset representatives {ub}.
(3) It does not depend on the choice of d.
(4) It commutes with the boundary maps.
(5) If t ∈ L(Z) then this action is the natural action on homology induced by

the conjugation action of L(Z) on U(Z).

Proof. We note that, since M is a (p,N)-admissible module, T acts on M via
reduction mod pN .

(1) For a fixed d and a fixed choice of {ub}, we need to show that for any γ ∈ ΓU ,
c⊗m and cγ⊗mγ have the same image under the action. Note that γub = ui(b)γ

′
b
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where γ′b ∈ ΓdU and i : {1, . . . , dr} → {1, . . . , dr} is a permutation. Further, by our
choice of d, we have that for t ∈ T , γ′bt = tγ′′b with γ′′b ∈ ΓU . Hence

(cγ ⊗mγ) · t =
1

dr

∑
b

cγubt⊗mγubt

=
1

dr

∑
b

cui(b)γ
′
bt⊗mui(b)γ′bt

=
1

dr

∑
b

cui(b)tγ
′′
b ⊗mui(b)tγ′′b

=
1

dr

∑
b

cui(b)t⊗mui(b)t

= (c⊗m) · t

as desired.
(2) We will now show, that for a given d, the action does not depend on the

choice of {ub}.
Fix t ∈ T and choose d so that t−1ΓdU t ⊂ ΓU . Let {ub} and {ubγb} be two

collections of coset representatives, with γb ∈ ΓdU . Then γbt = tγ′b, with γ′b ∈ ΓU .
For any element c⊗m ∈ Cj ⊗ΓU

M we have∑
b

cubγbt⊗mubγbt =
∑
b

cubtγ
′
b ⊗mubtγ′b

=
∑
b

cubt⊗mubt.

(3) We will now show that for any d1|d2, the actions given by d1 and d2 match.
Since for any d1 and d2, there is a common multiple d3, this will prove the well-
definedness of the action. Let n1 = dr1 and n2 = dr2. Choose coset representatives

u1, . . . , un1
of Γd1U inside ΓU . Then choose coset representatives v1, . . . , vn2/n1

of

Γd2U inside Γd1U . One easily checks that {uivj} is a complete set of coset represen-

tatives of Γd2U inside ΓU . Note that for a fixed j, {uivj} is a complete set of coset

representatives of Γd1U inside ΓU . For the purposes of this proof, we will denote by
|d the action of t ∈ T computed using the integer d.

For any c⊗m ∈ Cj ⊗ΓU
M , we now compute

(c⊗m)|d2t =
1

dr2

∑
i

∑
j

cuivjt⊗muivjt

=
1

(d2/d1)r

∑
j

(
1

dr1

∑
i

cuivjt⊗muivjt

)

=
1

(d2/d1)r

∑
j

(c⊗m)|d1t

= (c⊗m)|d1t.

Hence, we have proven (3).
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(4) Let ∂ : Cj → Cj−1 be a boundary map for the complex C.. We wish to show
that for any c⊗m ∈ Cj ⊗ΓU

M and any t ∈ T , we have

1

dr

∑
b

((∂c)ubt⊗mubt) =
1

dr

∑
b

∂ (cubt)⊗mubt.

This follows immediately from the fact that ∂ is a P (Q)-homomorphism.
(5) Let t ∈ L(Z). Taking d = 1, with coset representative the identity, yields the

desired result.
�

Let M be a (p,N)-admissible module whose underlying GL(n,Z/pZ)-module is
irreducible. We denote by Lie(U) the Z-Lie algebra associated to the algebraic
Z-group U . By [16, Sec. 3.8, (2)], we know that there is a spectral sequence whose
E1 term is H∗(Lie(U),M) with the abutment H∗(ΓU ,M). From the discussion in
[16, Section 1.7] we know that H∗(Lie(U),M) is naturally an L(Z(p))-module on
which L(Z(p)) acts via reduction modulo p (where we write Z(p) for the localization
of Z at the prime p).

This spectral sequence degenerates at E1, and it is functorial with respect to
compatible maps on Lie(U) and ΓU . In particular, it is L(Z)-equivariant. Therefore,
if in some degree k, the L(Z(p))-module H∗(Lie(U),M) is irreducible, so is the
abutment in that degree, and the spectral sequence yields an isomorphism of L(Z)-
modules

H∗(Lie(U),M) ∼= H∗(ΓU ,M). (†)
In the next theorem, we show that under certain hypotheses this isomorphism is
actually an isomorphism of SP -modules, where SP acts on H∗(ΓU ,M) via Defini-
tion 4.1.

Theorem 4.4. Let T = SP . Assume that the reductions of SU and of ΓU modulo
p are the same, and assume that H∗(Lie(U),M) is an irreducible L(Z(p))-module.
Then elements of SU act trivially on H∗(ΓU ,M) under the action defined in Def-
inition 4.1. The action of elements of SP on H∗(ΓU ,M) is equivariant under the
isomorphism (†), and thus yields a semigroup action of SP on H∗(ΓU ,M).

Proof. Elements of SU act trivially on the resolution C. (since U is commutative),
and act on M via reduction mod p. Hence, we see that they act trivially on
H∗(ΓU ,M). The equivariance under the isomorphism (†) with the Lie algebra
homology follows because the coset representatives ub act trivially on the Lie algebra
cohomology. This equivariance, combined with the fact that the action on the
Lie algebra homology is a semigroup action, yields a semigroup action of SP on
H∗(ΓU ,M). �

Remark 4.5. We will see in Section 5 that under the hypotheses of Theorem 4.4,
H∗(ΓU ,M) is a (p,N)-admissible SP -module.

Theorem 4.6. Let M be a (p,N)-admissible S-module on which S acts modulo pN .
Assume that SU and ΓU have the same image modulo pN . Assume that H∗(ΓU ,M)
is an irreducible L(Z(p))-module. Then the Hecke algebra HP acts equivariantly on
the Hochschild-Serre spectral sequence

E2
ij = Hi(ΓL, Hj(ΓU ,M)) =⇒ Hi+j(ΓP ,M),
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and a given packet of Hecke eigenvalues occurs in Hk(ΓP ,M) if and only if it
appears in ⊕

i+j=k

E∞ij

Proof. Let C. be the standard resolution of Z over GL(3,Q), and let F. be the
standard resolution of Z over L(Q). We view F as a P (Q)-resolution of Z via the
map ψ : P → L. Hence, U(Q) acts trivially on F .

Let (Γ, S) be a Hecke pair inside GL(3,Q), Recall that ΓP = Γ ∩ P (Q), ΓU =
Γ ∩ U(Q), and ΓL = ψ(ΓP ). Similarly, SP = S ∩ P (Q), SU = S ∩ U(Q), and
SL = ψ(SP ).

We now have an exact sequence 0→ ΓU → ΓP → ΓL → 0. Following [9, p. 171],
we will study the Hochschild-Serre spectral sequence of this exact sequence as the
spectral sequence associated with the double complex F ⊗ΓL

(C ⊗ΓU
M).

There are two spectral sequences associated with this double complex. The first
has

E2
ij = Hi(ΓL, Hj(ΓU ,M))

and is just the Hochschild-Serre spectral sequence associated to the exact sequence
above. The second has

8E1
ij = Hi(ΓL, Cj ⊗ΓU

M),

and the only nonzero column in the 8E1 page is the zeroth column. It is easy to see
([9, VII.5.5]) that

8E1
0j = (Cj ⊗ΓU

M)ΓL
= Cj ⊗ΓP

M

and 8E2
0,j is just the jth homology of C ⊗ΓP

M , namely Hj(ΓP ,M).
We note that the action of the Hecke operator ΓP sΓP with s ∈ SP on a homology

class in the abutment represented by the cycle c⊗ΓP
m is computed by writing

ΓP sΓP =
∐

sαΓP .

Then ΓP sΓP takes the class of c⊗ΓP
m to the class of∑

α

csα ⊗ΓP
msα.

From Definition 4.1 and our hypotheses, we obtain an action by any given element
t ∈ SP on C.⊗ΓU

M . By Theorem 4.4, these actions compile into a semigroup action
of SP on the homology which is trivial on SU (because SU and ΓU have the same
image modulo p) and hence yields an SL-action on H∗(ΓU ,M). Since SP acts on
H∗(ΓU ,M) via ψ, we obtain a Hecke action of HP on E2

ij . Because this action is
derived from an action on the double complex, it commutes with all the differentials
of the spectral sequence. One checks easily that this action on HP is given by the
formula given in the next paragraph.

We now check that this action dovetails with the action described above on the
abutment. An element of E0

pq has the form
∑
r fr ⊗ΓL

(cr ⊗ΓU
mr) where r runs

through a finite index set. Each term of the sum is actually ΓP -invariant, since ΓP
acts via ψ : ΓP → ΓL. Hence, we may actually write this element as∑

r

fr ⊗ΓP
(cr ⊗ΓU

mr),
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Thus the action of ΓP sΓP takes the element above to∑
α

∑
r

frsα ⊗ΓP
(
∑

cr ⊗ΓU
mr)sα =

∑
α

∑
r

frsα ⊗ΓP
(
∑

cr ⊗ΓU
mr)ψ(sα).

A cycle in degree k of E0 is represented by a sum of terms∑
i+j=k

∑
r

f (j)
r ⊗ΓP

(c(i)r ⊗ΓU
mr)

where f
(j)
r ∈ Fj , c

(i)
r ∈ Ci, and mr ∈ M . If this cycle survives to E∞, then its

image in the associated graded of the abutment is given by the image of the class
of ∑

r

f (0)
r ⊗ΓP

(c(k)
r ⊗ΓU

mr),

namely ∑
r

c(k)
r ⊗ΓP

mr.

Therefore we see that the Hecke actions described above on the spectral sequence
and its abutment are compatible. The last assertion of the statement of the theorem
follows from linear algebra.

�

We will use the methods of [3, Section 9] to compute the Hecke action of HP on
E2
ij in terms of the action of SL on C ⊗ΓU

M .

5. Kostant’s theorem

Now, let M be a Z-form of the irreducible GL(3)-module of highest weight
(a, b, c), where (a, b, c) is in the lowest alcove. Let R be the ring Z(p). Assume
that Hi(Lie(U),M(Z(p))) is an irreducible L(Z(p))-module. Then [16, Section 3.8]
shows that the groups Hi(Lie(U),M(R)) and Hi(U(Z),M(R)) are isomorphic. As
we have seen, the natural action of L(R) on the Lie algebra homology and the action
of L(R) defined in Definition 4.1 are equivariant with respect to this isomorphism.
It follows that under these assumptions, Hi(U(Z),M(Fp)) is (p,N)-admissible. We
describe this module in the cases we need in the following theorem.

Theorem 5.1. Let P = Pd and P ′ = P ′d for d a positive divisor of N , and let
U = Ud and U ′ = U ′d. Let χ0 : (Zd)× → F and χ1 : (Z/(N/d))× → F be characters
and (a, b, c) a p-restricted triple in the lowest alcove. Then

(1) the ψ(SP )-module H1(ΓU , F (a, b, c)dχ0χ1
) is isomorphic to

F (b+ 1)χ0
⊗ F (a, c− 1)N/dχ1

.

(2) the ψ(SP )-module H2(ΓU , F (a, b, c)dχ0χ1
) is isomorphic to

F (a+ 2)χ0
⊗ F (b− 1, c− 1)N/dχ1

.

(3) the ψ(SP ′)-module H2(ΓU ′ , F (a, b, c)dχ0χ1
) is isomorphic to

F (a+ 1, b+ 1)dχ0
⊗ F (c− 2)χ1

.
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Proof. Set U = Ud = g−1
d U0gd and set V = GL(3,Z)∩U . Then a short computation

shows that

ΓU = Γ ∩ U =

g−1
d

 1 0 0
(N/d)x 1 0

y 0 1

 gd

 ,

with x, y ∈ Z, so that V/ΓU is cyclic of order N/d. Since N/d is prime to p, we
have, by [9, Thm III.10.4] (adapted for homology), that

H∗(V,M) ∼= H∗(ΓU ,M)U/ΓU
.

We see that for each k, Hk(V,M) is a quotient of Hk(ΓU ,M).
A similar computation works for U ′ = U ′d and V ′ = GL(3,Z) ∩ U ′.
Note also that both V and ΓU are free abelian of rank 2. Identifying V or ΓU

with Z2, there is a resolution of Z as Z[Z2]-modules of the form

0→ Z[Z2]→ Z[Z2]⊕ Z[Z2]→ Z[Z2]→ Z→ 0

(with different maps, depending on whether we are working with ΓU or V ). Hence,
the homology of V or of ΓU with coefficients in M is the homology of a complex

0→M →M ⊕M →M → 0.

Since V and ΓU act via reduction mod p on M , and have the same reduction mod
p, we see that H0(V,M) and H0(ΓU ,M) have the same dimension, namely the
dimension of MΓU

= MV . Similarly, by Poincaré duality we have that (as vector
spaces) H2(V,M) ∼= MV ∼= MΓU ∼= H2(ΓU ,M). A simple dimension counting
argument then shows that H1(ΓU ,M) has the same dimension as H1(V,M). Hence,
for k = 0, 1, 2, we have that Hk(ΓU ,M) ∼= Hk(V,M) as ψ(SP )-modules.

We now compute H∗(V, F (a, b, c)) for each of the three parts of the theorem,
we use the fact that the Lie algebra homology of [16] is isomorphic to the group
homology as SP -modules (Theorem 4.4).

(1) Using [16, p. 128], we find that

H1(V, F (a, b, c)) ∼= H1(V, F (−c,−b,−a))∨

∼= F (−b− 1;−c+ 1,−a)∨

∼= F (b+ 1; a, c− 1).

(2) Using [16, p. 128], we find that

H2(V, F (a, b, c)) ∼= H2(V, F (−c,−b,−a))∨

∼= F (−a− 2;−c+ 1,−b+ 1)∨

∼= F (a+ 2; b− 1, c− 1).

(3) Using [16, p. 128], we find that

H2(V ′, F (a, b, c)) ∼= H2(V ′, F (−c,−b,−a))∨

∼= F (−b− 1,−a− 1;−c+ 2)∨

∼= F (a+ 1, b+ 1; c− 2).

Each of these modules is an irreducible (p,N)-admissible module.

All these isomorphisms are ψ(S)-equivariant, by Theorem 4.4 above combined
with the proof of [6, Prop. 2.8]. The fact that each homology group is a (p,N)-
admissible module arises from the fact that each is isomorphic to an irreducible
(p,N)-admissible module. (If we were outside the lower alcove, (p,N)-admissibility
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of the modules would be a problem, since they would have a filtration whose succes-
sive quotients are irreducible (p,N)-admissible modules, but would not themselves
be irreducible.) Finally, using the fact that the nebentype character is trivial on
U(Z), one sees immediately, using Theorem 3.1(3), that the nebentype character
acts as desired on the homology. �

6. Fitting Galois representations

Now fix N squarefree, set Γ = Γ0(3, N) and S = S0(3, N).
Let P = Pd for d a positive divisor of N . Let χ0 : (Z/d)× → F× and χ1 :

(Z/(N/d))× → F× be characters and χ = χ0χ1. We use the notation of [3] for
the irreducible modules F (a, b, c)dχ of G(F) and F (c; a, b)dχ0χ1

, determined by a
dominant weight (a, b, c) (the superscript d denotes twisting by gd and the subscript
denotes tensoring with the indicated nebentype character). We also write F (a, b)χ
for the (p,N)-admissible irreducible S0(2, N)±-module of highest weight (a, b) and
nebentype χ.

Let ω denote the mod p cyclotomic character, ω : GQ → F×.
Recall from Sections 3 and 9 of [3] that under the hypothesis of the following

theorem, there is a natural map H3,N → HPd
, so that it makes sense to speak of

Hecke eigenpackets in the homology of Γ0(3, N) ∩ Pd and Galois representations
fitting that homology.

Theorem 6.1. Let P = Pd for d a positive divisor of the squarefree positive integer
N , let U = Ud and let L = P/U . Let χ0 : (Z/d)× → F× and χ1 : (Z/(N/d))× → F×
be characters.

Suppose the action of elements of SL on Hj(ΓU ,M) compile to make it an SL-

module which is isomorphic to F (γ)χ0
⊗ F (α, β)

N/d
χ1 and that the two-dimensional

irreducible Galois representation τ fits H1(Γ0(2, N/d)±, F (α, β)χ1
). Then ωτ ⊕

ωγχ0 fits H1+j(Γ0(3, N) ∩ Pd,M).

Proof. The homology of ΓL vanishes in degrees > 1 because we are assuming p > 3
and ΓL is isomorphic to the subgroup Γ0(2, N/d)± of GL(2,Z) by Theorem 3.1(5).
Thus the Hochschild-Serre spectral sequence for the exact sequence

0→ ΓU → ΓP → ΓL → 0

is two columns thick and degenerates at E2. So any packet of Hecke eigenvalues
occurring in E2

1j = H1(ΓL, Hj(ΓU ,M)) will also occur in H1+j(ΓP ,M).
The hypotheses of the theorem imply that τ fits H1(ΓL, Hj(ΓU ,M)) (considered

as an HL-module). Hence, the calculation in [3, Section 9] implies that τω ⊕ ωγχ0

fits H1(ΓL, Hj(ΓU ,M)), considered as an HP (or an H3,N ) module.
�

Next, we state a theorem analogous to Theorem 6.1, for the groups P ′d.

Theorem 6.2. Let P ′ = P ′d for d a positive divisor of the squarefree positive integer
N , let U ′ = U ′d and let L′ = P ′/U ′. Let χ0 : (Z/d)× → F× and χ1 : (Z/(N/d))× →
F× be characters.

Assume that the actions of elements of SL′ on Hj(ΓU ′ ,M) compile to make

it an SL′-module which is isomorphic to F (α, β)
N/d
χ0 ⊗ F (γ)χ1

. Suppose that the
two-dimensional Galois representation τ is attached to a class in

Hi(Γ0(2, d)±, F (α, β)χ0
).
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Then this class, interpreted as an element of Hi(ΓL′ , Hj(ΓU ′ ,M)), has τ ⊕ωγ+2χ1

attached.

Proof. The proof of this theorem is a result of calculations similar to those in [3,
Section 9]. �

The next item is not directly a review from [3] but it is very close to Theorem
8.1 of that paper and its proof.

Let H be a plane in Q3 and now let PH be the stabilizer of H in GL(3). Set
St(H) to be the Steinberg module of H tensored with F. It is a PH -module, where
PH acts through ψ : PH → GL(H).

Definition 6.3. Let S denote a subsemigroup of GL(n,Q) and X,Y two FS-
modules. Write X � Y if X and Y have finite length filtrations whose associated
graded modules are isomorphic and on each of which S acts through its reduction
modulo some positive integer.

In the situation of this definition, putting the commuting Hecke operators into
Jordan Canonical Form shows that a given Galois representation fits X if and only
if it fits Y .

Following the notation of [3, 9], we write IndGHM = M⊗ZHZG, for H a subgroup
of G and M a right H-module.

Theorem 6.4. Let M = F (a, b, c)χ where (a, b, c) is in the lowest alcove and χ is

a character of squarefree conductor N , and let X(H,M) = IndΓ
ΓPH

St(H) ⊗F M .

Suppose that the three-dimensional Galois representation ρ fits H2(Γ, X(H,M)).
Then ρ is isomorphic either to a sum of three characters or to a sum ωcξ ⊕ σ with
σ irreducible and two-dimensional and ξ a character unramified at p.

Proof. PH is conjugate by an element g of Γ to P ′d for some positive divisor d of
N . Hence, without loss of generality, we may assume that PH = P ′d. Let Hd

be the plane stabilized by P ′d . Then the conjugation Ad(g) takes the S-module
X(H,M) isomorphically to the S-module X(Hd,M ◦Ad(g)). We see that M ◦Ad(g)
is isomorphic to M as GL(3,Fp)-module, and since g ∈ Γ, the nebentype character
is still χ. We may then factor χ into χ0χ1, where χ0 has conductor d and χ1 has
conductor N/d.

By Shapiro’s Lemma, H2(Γ, X(H,M)) is isomorphic to H2(ΓPH
,St(H) ⊗M).

The homology of ΓL′ vanishes in degrees larger than 1. Therefore the Hochschild-
Serre Spectral sequence for the short exact sequence

0→ ΓUH
→ ΓPH

→ ΓL′ → 0

degenerates at E2, and we have

H2(ΓPH
,St(H)⊗M) � H0(ΓL′ , H2(ΓUH

,St(H)⊗M))⊕H1(ΓL′ , H1(ΓUH
,St(H)⊗M)).

Since ΓUH
acts trivially on St(H), we have,

H0(ΓL′ , H2(ΓUH
,St(H)⊗M)) ∼= H0(ΓL′ ,St(H)⊗H2(ΓUH

,M))

and then by Borel-Serre duality,

H0(ΓL′ , H2(ΓUH
,St(H)⊗M)) ∼= H1(ΓL′ , H2(ΓUH

,M)).

Now, by Theorem 5.1, H2(ΓUH
, F (a, b, c)χ) ∼= F (a + 1, b + 1; c − 2)χ, so by

Theorem 6.2, any eigenpacket in the first summand must have attached a Galois
representation of the form τ ⊕ ωcχ1, as desired
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We now examine the second summand.

H1(ΓL′ , H1(ΓUH
, X(H,M)) ≈ H1(ΓL′ , St(H)⊗H1(ΓUH

,M))

≈ H0(ΓL′ , H1(ΓUH
,M)).

For any (p,N)-admissible module W , any Hecke eigenpacket in H0(Γ0(2, d)±,W )
has an attached two-dimensional Galois representation which is a sum of two char-
acters, by [1, Thm. 4.1.4]. Therefore, if ρ fits the part of the homology arising by
Shapiro’s lemma from a Hecke eigenpacket occurring in H0(ΓL′ , H1(ΓUH

,M)), it
follows from Theorem 6.2 that ρ is the sum of three characters. �

7. The spliced complex

We use exactly the same spliced complex X as in [3] to serve as a resolution
of Z by GL(3,Q)-modules. We describe the complex and the associated spectral
sequence briefly here, but refer the reader to [3] for full details.

For i > 1, we set Xi = Shi−2 to be the (i − 2)-sharblies for GL(3,Q), and the
boundary Xi+1 → Xi to be the standard boundary map in the sharbly complex [5].
X1 = ⊕H St2(H) is the sum over all planes in Q3 of the respective Steinberg

module. X0 is generated freely by the points of the projective plane over Q. The
boundary maps X2 → X1 and X1 → X0, as well as the augmentation map X0 → Z
are fully described in [3, Section 7], and other than their existence, their definitions
will not play a role in this paper.

We now construct a spectral sequence from the complex X, by choosing a res-
olution F of Z by Z[S]-modules that are free as Z[Γ]-modules. We fix a (p,N)-
admissible right S-module M , and let Λ = X ⊗M with the diagonal S-action. We
then construct the double complex Λ ⊗Γ F . To compute the homology H∗(Γ,Λ),
we use the spectral sequence described in [9, VII.5.3]:

E1
ij = Hj(Γ,Λi) =⇒ Hi+j(Γ,Λ) ∼= Hi+j(Γ,M),

where the last isomorphism comes from the fact that Λ is a resolution of M . This
spectral sequence with its differentials is equivariant for the Hecke action.

We then have the E1 page of our spectral sequence as follows, where Hi(σ) :=
Hi(Γσ,Mσ). Here Γσ denotes the stabilizer of the basis element σ and Mσ denotes
M twisted with the orientation character of Γσ on σ. See [3] for more details and
explanation of the 0’s in the diagram below.⊕
σ∈X0/Γ

H3(σ) H3(Γ, X1 ⊗M) 0 0 0

⊕
σ∈X0/Γ

H2(σ) H2(Γ, X1 ⊗M) 0 0 0

⊕
σ∈X0/Γ

H1(σ) H1(Γ, X1 ⊗M) 0 0 0

⊕
σ∈X0/Γ

H0(σ) H0(Γ, X1 ⊗M) H0(Γ, Sh0 ⊗M) H0(Γ, Sh1 ⊗M) H0(Γ, Sh2 ⊗M)

Let ρ = τ ⊕ ψ in medial form. It will follow from the following theorem that
E1

02 contains a Hecke eigenclass that has ρ for its attached Galois representation.
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Moreover, any Hecke eigenclass in E1
02 that has ρ for its attached Galois represen-

tation either survives to E∞ and therefore gives rise to an eigenclass in H2(Γ,M),
or is killed by an eigenclass in E2

30 that also has ρ attached. In the first case this is
immediate, and in the second case it follows from Borel-Serre duality and the fact
that the sharbly complex is a resolution of the Steinberg module. In either case, we
will conclude that ρ fits H2(Γ,Mε) and H2(Γ,Mε), where the level N , nebentype
ε and weight M are what would be predicted by [4, Conj 3.1], if the strict parity
requirement were dropped. Recall that by Lemma 2.4, ρ fits H2 if and only if it
fits H2.

Theorem 7.1. Assume p > 3. Let τ : GQ → GL2(F) be odd and irreducible and
let ψ : GQ → GL1(F) be a character. Let ρ = τ ⊕ ψ (medially embedded), N be the
Serre conductor of ρ, χ be the factor of det(ρ) unramified at p, and M = F (a, b, c)χ,
where F (a, b, c) is a weight predicted by [4] for ρ (without taking strict parity into
account).

Assume that (a, b, c) is in the lowest alcove, that c 6≡ b + 1 modulo p − 1, and
that N is squarefree.

Let Γ = Γ0(3, N) and consider the spectral sequence constructed from the complex
X.

(i) The E1
12 term of the spectral sequence is a finite-dimensional F-vector space

not fitted by ρ.
(ii) E2

30 is isomorphic to H2(Γ,M).
(iii) ρ fits E1

02.

Proof. Let the Serre conductor of τ be N1 and the Serre conductor of ψ be d. Then
N = N1d. Since F (a, b, c) is a predicted weight for ρ as formulated in [4, Def. 2.23]
(in which strict parity is not mentioned), it follows that F (a+1, c) is a Serre weight
for τ and ψ = ωb+1χ0 for some character χ0 of conductor d.

Since the sharbly complex is a resolution of the Steinberg module St for GL(3,Q),
and 6 acts invertibly on M , E2

30
∼= H1(Γ, St⊗M), cf. Corollary 8 in [5]. Borel-Serre

duality then gives an isomorphism of Hecke-modules E2
30
∼= H2(Γ,M). This proves

(ii).
We now consider E1

12. Recall from the study of X in [3] that there is a finite set
of planes H(Γ) in Q3 such that

X1 ⊗M ∼=
⊕

H∈H(Γ)

IndΓ
ΓPH

St2(H)⊗M

where PH is the stabilizer of H and acts on St2(H) via its quotient L2
H . In fact

H(Γ) may be parametrized by the set of positive divisors d of N in such a way that
PH = P ′d for some d. Because H(Γ) is finite, an application of Shapiro’s lemma plus
the Hochschild-Serre spectral sequence and Borel-Serre duality shows that E1

1,2 is
finite-dimensional over F. (Compare the proof of Theorem 6.4.)

By Theorem 6.4, any Galois representation π fitting E1
12 is either a sum of three

characters or a sum of ωcξ and an irreducible two-dimensional representation, where
ξ is a character unramified at p. Since ωc 6= ωb+1, and ρ is not the sum of three
characters, π cannot equal ρ. This proves (i).

Now we prove (iii): We may replace M by M∗ = F (a, b, c)dχ0χ1
with which it is

isomorphic, since d is prime to p. Then E1
02 = H2(Γ, X0 ⊗M∗) = ⊕H2(σ). From

the definition of X in [3], there is a σ such that H2(σ) = H2(ΓPd
,M∗) is a direct
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summand of E1
02. We will find the system of eigenvalues in which we are interested

in this summand.
Since F (a+ 1, c) is a Serre weight for τ , F (a, c− 1) is a Serre weight for ω−1τ .

By Serre’s conjecture (which is now a theorem [13, 14, 15]), ω−1τ is attached to
a Hecke eigenclass in H1(Γ0(2, N1), F (a, c − 1)χ1

). Because ω−1τ is absolutely
irreducible, this class is cuspidal, so the same Hecke eigenpacket (by the Eichler-
Shimura theorem) occurs in

H1(Γ0(2, N1)±, F (a, c− 1)χ1
).

By Theorem 5.1, the ΓL-module H1(ΓU ,M) is isomorphic to

F (b+ 1)χ0
⊗ F (a, c− 1)N/dχ1

.

We finish by invoking Theorem 6.1.
�

Proof of Theorem 2.6: First suppose ρ fits E2
30. By Theorem 7.1(ii) and Lemma 2.4,

ρ fits H2(Γ,M) and we are finished.
So assume ρ does not fit E2

30. Since E1
12 ⊕ E2

30 is finite dimensional over F, it
is a sum of generalized Hecke eigenspaces. By Theorem 7.1(i), ρ fits none of these
eigenspaces. Then Theorem 7.1(iii) implies that some Hecke eigenclass in E1

02 has
ρ attached, and will survive to E∞. Hence ρ fits the abutment H2(Γ,M) ∼= E2

30,
which is a contradiction. �

Remark 7.2. One can work out in a similar way that not only does ρ fit E2
02

and E2
30 but also E1

11. We do not know anything about the multiplicities of the
corresponding Hecke eigenspaces, or generalized eigenspaces. We suspect that the
differentials d : E2

30 → E2
11 and/or d : E3

30 → E3
02 will often be nonzero on some

of the eigenspaces fitting medially embedded ρ, and that the vanishing of these
differentials may account for some of the anomalies reported in the calculations of [4,
Remark 3.4]. Explicit computations of H2(Γ, F (a, b, c)) would be interesting, and
studying the multiplicity of eigenspaces in H2(Γ, F (a, b, c)) could provide insight
into which terms of the spectral sequence are fitted by ρ, and when the eigenspaces
corresponding to ρ survive to E∞ to show up in the homology.

8. Comments on [3]

We note the presence of two errors in [3], and give the necessary corrections to
the proofs there.

First, in the beginning of [3, Section 5], Bm should be the lower triangular
matrices. Then [3, Theorem 5.1], which is correct with weights relative to the
upper triangular Borel, becomes incorrect; using the lower triangular Borel, the
weight in the theorem should now be F (a; b, c), rather than F (c; a, b).

In section 9, H2(Ud ∩ Γ0(3, N),M) is incorrectly identified with

H0(Ud ∩ Γ0(3, N),M).

The two spaces are, in fact, isomorphic as vector spaces (by Poincaré duality), but
not as ΓL-modules. Rather,

H2(Ud ∩ Γ0(3, N), F (a, b, c)χ) ∼= F (a+ 2; b− 1, c− 1)dχ

as ψ(SP )-modules. This can be proved by viewing H2(Ud ∩ Γ0(3, N), F (a, b, c)) as
the homology of the real torus with fundamental group Ud ∩ Γ0(3, N) with local
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coefficient system determined by F (a, b, c). If f is the fundamental class of the
torus, then elements in H2(Ud ∩ Γ0(3, N), F (a, b, c)) can be identified with cycles
of the form f ⊗ m where m ∈ F (a, b, c)Ud . By the preceding paragraph, this
gives us the fact that H2(Ud ∩ Γ0(3, N), F (a, b, c)) is isomorphic to F (a; b, c) as an
L(Z)-module. To determine its further structure as L(Z(p))-module as given in
Definition 4.1, we perform the calculation given by the displayed formula in that
definition and compute that the highest weight vector inH2(Ud∩Γ0(3, N), F (a, b, c))
(which has highest weight (a, b, c) with respect to the diagonal matrices in L(Z))
is twisted by a certain character on the diagonal matrices in L(Z(p)). This twist

is by the character diag(t, u, v) 7→ t2/(uv), and we find that H2(U(Z), F (a, b, c)) is
isomorphic to F (a+ 2; b− 1, c− 1).

In order to compensate for this change, we apply the subsequent computations
in [3, Section 9] to the twisted contragredient representation tρ−1 ⊗ ω2 to prove
that it corresponds to a Hecke eigenclass in the desired cohomology space. The
result for ρ then follows by duality.
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