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Abstract

Serre’s conjecture relates two-dimensional odd irreducible Galois rep-
resentations over F̄p to modular forms. We discuss a generalization of
this conjecture to higher-dimensional Galois representations. In particu-
lar, for n-dimensional Galois representations which are irreducible when
restricted to the decomposition group at p, we strengthen a conjecture of
Ash, Doud, and Pollack. We then give computational evidence for this
conjecture in the case of three-dimensional representations.

1 Introduction

In [ADP02], a conjecture connecting n-dimensional Galois representations over
F̄p with arithmetic cohomology classes is described and computational evidence
for the conjecture is given for three-dimensional Galois representations. This
conjecture is a generalization of Serre’s conjecture [Ser87] relating odd irre-
ducible two-dimensional Galois representations and modular forms. An inter-
esting case of the conjecture occurs when the restriction of the representation
to a decomposition group at p remains irreducible. In this case we say that the
representation is supersingular, and note that its restriction to inertia at p may
be diagonalized in terms of niveau n fundamental characters. In [ADP02], sev-
eral examples of such representations with n = 3 were given, and computational
evidence for the conjecture was presented. Unfortunately, the levels of all of the
examples were fairly high, and computational limitations did not allow exhaus-
tive calculations to test whether the conjecture predicted all possible weights.
We have now been able to complete these computations, and have discovered
that the original conjecture failed to predict several weights which do in fact
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seem to work. In this paper, we modify the conjecture based on this compu-
tational evidence, and give additional computational evidence for the modified
conjecture.

In addition to the computational evidence given here, we note that Florian
Herzig [Her06] has come up with a description of the predicted weights for a
supersingular three-dimensional Galois representation based on decomposition
of characteristic p reductions of certain characteristic zero modules. The two
predictions arrived at independently both yield the same set of weights, at least
for what Herzig calls “regular” weights. Herzig’s results will appear elsewhere—
in this paper we concentrate on the computational evidence for the conjecture.

2 Statement of the conjecture

In this section we give brief definitions of the terms needed to state the con-
jecture, together with a statement of the conjecture, and a comparison of the
current version of the conjecture with an older version.

For each prime q we fix a decomposition group Dq in GQ together with the
standard filtration of ramification subgroups Iq,i for 0 ≤ i inside this decompo-
sition group. A Frobenius element Frobq at q is then an element of Dq which
generates Dq/Iq,0 and acts as the qth power map on residue fields.

2.1 Hecke operators and attached eigenvectors

Fix a prime p and positive integers n and N , with (N, p) = 1, and let Γ0(N) be
the subgroup of matrices in SLn(Z) whose first row is congruent to (∗, 0, . . . , 0)
modulo N . Let SN be the subsemigroup of matrices with integer entries in
GLn(Q), satisfying the same congruence condition. Then (Γ0(N), SN ) is a Hecke
pair [AS86], and we define the Hecke algebra H(N) to be the commutative
F̄p-algebra of double cosets Γ0(N)\SN/Γ0(N), as in [AS86]. For each prime
` - N and each k between 0 and n, we denote by T (`, k) the double coset with
representative a diagonal matrix with k 1’s followed by n− k `’s.

We note that the Hecke algebra H(N) acts on homology and cohomology
of Γ0(N) with coefficients in any F̄p[SN ]-module. We then make the following
definition:

Definition 2.1. Let V be an H(pN)-module, and let v ∈ V be a simultaneous
eigenvector of all the T (`, k) for which ` - N and 0 ≤ k ≤ n. Denote the
eigenvalue of T (`, k) acting on v by a(`, k) ∈ F̄p. Let ρ : GQ → GLn(F̄p) be a
Galois representation unramified outside pN , and suppose that for all ` - pN ,

n∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk = det(I − ρ(Frob`)X).

Then we say that ρ is attached to v, or that v corresponds to ρ.

Note that the negative of the coefficient of X in det(I − ρ(Frob`)X) is the
trace of ρ(Frob`), and the coefficient of Xn is (−1)n times the determinant of

2



ρ(Frob`). For n = 3, we will call the coefficient of X2 in det(I−ρ(Frob`)X) the
cotrace of ρ(Frob`) and denote it by T2(ρ(Frob`)).

In our conjecture, the H(pN)-module used will be the cohomology group
H3(Γ0(N),W ), with some coefficient module W . The values of N and W will
be determined by the weight, level, and nebentype of the representation, defined
below.

2.2 Level and Nebentype

Let ρ : GQ → GLn(F̄p) be a Galois representation (i.e. a continuous homomor-
phism with respect to the profinite topology on GQ and the discrete topology
on GLn(F̄p)). Let M be an n-dimensional F̄p-vector space on which GQ acts
via ρ.

For each prime q 6= p, we set gi = |ρ(Iq,i)| and

nq =
∞∑

i=0

gi/g0 dimM/M Iq,i

The nq are nonnegative integers, and only finitely many of them are nonzero.

Definition 2.2. Let ρ : GQ → GLn(F̄p) be a Galois representation. Then the
level N = N(ρ) of ρ is

N =
∏
q 6=p

qnq .

Note that the level is a positive integer, relatively prime to p, and divisible
by exactly those primes q 6= p at which ρ is ramified.

Definition 2.3. Let ρ : GQ → GLn(F̄p) be a Galois representation of level
N . Then det ρ factors as ωkε, where ω is the mod p cyclotomic character, ε is
unramified at p, and 0 ≤ k ≤ p− 2. By class field theory we may consider ε as
a character ε : (Z/NZ)× → F̄×p . We say that ε is the nebentype of ρ.

2.3 Weights

The generalization of the predicted weight of a Galois representation that we
will use is an irreducible GLn(Fp)-module. We begin by describing the set of
such modules, together with certain relationships between irreducible modules.
We then describe our prediction of which weights correspond to a given Galois
representation.

2.3.1 Parametrization by p-restricted n-tuples

Definition 2.4. An n-tuple (an−1, . . . , a0) is p-restricted if, for 1 ≤ i ≤ n− 1,

0 ≤ ai − ai−1 ≤ p− 1

and
0 ≤ a0 ≤ p− 2.
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Proposition 2.5. [Gre80, DW92] The set of all irreducible F̄p[GLn(Fp)]-modules
is in one-to-one correspondence with the set of p-restricted n-tuples.

The correspondence of Proposition 2.5 is made explicit by assigning a p-
restricted n-tuple (an−1, . . . , a0) to the unique simple submodule of the dual
Weyl module with highest weights (an−1, . . . , a0). We denote this module by
F (an−1, . . . , a0).

2.3.2 Prime and dagger notation

Definition 2.6. Given an n-tuple of integers (an−1, . . . , a0), we define (an−1, . . . , a0)′

to be the set of all p-restricted n-tuples (bn−1, . . . , b0) such that each bi ≡ ai

(mod p− 1).

Note that (an−1, . . . , a0)′ always contains at least one n-tuple, but it can con-
tain more. For example, if n = 3 and p = 11, then (1, 0, 0)′ = {(1, 0, 0), (11, 10, 0)},
and (10, 0, 0)′ = {(0, 0, 0), (10, 0, 0), (10, 10, 0), (20, 10, 0)}.

Definition 2.7. Given a p-restricted n-tuple of integers (an−1, . . . , a0), we de-
fine (an−1, . . . , a0)† to be the set of n-tuples (bn−1, . . . , b0) in (an−1, . . . , a0)′

such that each bi − bi−1 ≥ ai − ai−1.

As an example, when n = 3 and p = 11, (10, 0, 0)† = {(10, 0, 0), (20, 10, 0)}.

Definition 2.8. We define

F (an−1, . . . , a0)′ = {F (bn−1, . . . , b0) : (bn−1, . . . , b0) ∈ (an−1, . . . , a0)′}

and

F (an−1, . . . , a0)† = {F (bn−1, . . . , b0) : (bn−1, . . . , b0) ∈ (an−1, . . . , a0)†}.

2.3.3 Extra weights

In case n = 3, we make the following definition.

Definition 2.9. Let (a2, a1, a0) be a p-restricted triple. Then if a2−a0 < p−2,
we define the extra weight associated to F (a2, a1, a0) to be

F (b2, b1, b0) =

{
F (p− 2 + a0, a1, a2 − (p− 2)) if a2 ≥ p− 2
F (2(p− 2) + a0 + 1, a1 + (p− 1), a2 + 1) if a2 < p− 2.

For a detailed discussion of extra weights, and a motivation for their defini-
tion, see [ADP02, Remark 3.4].
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2.4 Predicted weights

In order to predict the weights corresponding to a supersingular Galois repre-
sentation, we diagonalize its restriction to inertia. By [ADP02, Thm 2.16], this
diagonalization takes the form

ρ|Ip,0 ∼

ψ
m
n,1

. . .
ψm

n,n

 ,

for some m, where ψn,1, . . . , ψn,n are the fundamental characters of niveau n
[Ser72, p. 267]. Our prediction for the weight will depend on the exponent m
in this decomposition. Note that by permuting the fundamental characters, we
may multiply m by pk for 0 ≤ k ≤ n − 1. In addition, since the fundamental
characters have order pn− 1, we see that m is only defined modulo pn− 1. Our
conjecture will be invariant under these choices.

We let a0, . . . , an−1 be any integers such that

m ≡ a0 + a1p+ . . .+ an−1p
n−1 (mod pn − 1)

Note that multiplying m by p permutes the set of ai cyclically, and that the
ai depend only on the congruence class of m modulo pn − 1. Note also that we
may add a multiple of p− 1 to each of the ai to get another n-tuple satisfying
the same relation.

Define integers {bn−1, . . . , b0} by relabeling the ai so that each bi ≥ bi−1. We
will then define ci = bi − i. If the n-tuple (cn−1, . . . , c0) is p-restricted, then we
predict all of the weights in F (cn−1, . . . , c0)†, otherwise we do not predict any
weights. If n = 3, we also predict any extra weights attached to these predicted
weights. The difference between this prediction for the weights of ρ and the
prediction of [ADP02] is the main point of the paper.

2.5 Statement and consequences of the conjecture

Conjecture 2.10. Let ρ : GQ → GLn(F̄p) be a supersingular Galois representa-
tion such that the image of complex conjugation is similar to an upper triangular
matrix with alternating 1’s and −1’s on the diagonal. Let N be the level of ρ and
ε the nebentype. If V is any one of the weights predicted for ρ in Section 2.4,
then ρ is attached to an eigenclass in

H∗(Γ0(N), V ⊗ ε).

Note that a supersingular representation is automatically irreducible. In
addition, note that the condition on the image of complex conjugation is auto-
matically satisfied if p = 2, or if n = 2, 3 and complex conjugation is a nonscalar
matrix (in other words, if ρ is odd in the sense of [ADP02, pg. 522]). Finally,
we note that for n = 2, if ρ is attached to any cohomology class in level N and
coefficient module V ⊗ ε, then it is attached to one in H1(Γ0(N), V ⊗ ε), and
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for n = 3, if ρ is attached to any cohomology class in level N and coefficient
module V ⊗ ε, then it is attached to one in H3(Γ0(N), V ⊗ ε) [AS00, pg. 6].

If n = 3, the computational evidence would support extending the conjecture
to claim that only the predicted weights yield eigenclasses corresponding to ρ.
In higher dimensions, however, it is not clear exactly what the analogue of the
extra weights should be.

The following theorems follow from the conjecture, with proofs similar to
Theorems 3.6 and 3.10 in [ADP02].

Theorem 2.11. If Conjecture 2.10 is true for a representation ρ : GQ →
GLn(F̄p), then it is true for ρ⊗ωs, where ω is the cyclotomic character modulo
p, and s ∈ Z.

Theorem 2.12. If Conjecture 2.10 is true for a representation ρ : GQ →
GLn(F̄p), then it is true for the contragredient representation ρ∗ given by com-
posing ρ with the transpose-inverse automorphism of GLn(F̄p).

2.6 Comparison with original conjecture

The original conjecture (see [ADP02]) for supersingular representations pre-
dicted exactly the same level and nebentype for a given ρ, but had a different
formula for the predicted weights. The original prediction involved writing m
as

m = an−1 + an−2p+ . . .+ a0p
n−1

with 0 ≤ ai−a0 ≤ p−1 for all i. We then sort and rename the ai as bn−1, . . . , b0,
with bi ≥ bi−1. The conjecture then predicts that some nonempty subset of
F (bn−1 − (n− 1), . . . , b0 − 0)′ will yield a cohomology class corresponding to ρ.

Note first that the conditions on the ai in the original conjecture are much
more restrictive than those in the new conjecture. Hence, the new conjecture
tends to predict more weights. For most three dimensional representations (in
particular, when m = a+ bp+ cp2, with 0 ≤ a, b, c ≤ p− 1, and no two of a, b, c
equal or consecutive) it is easy to see that the original conjecture predicted three
weights (plus possible extra weights), while the modified conjecture predicts nine
weights (six directly, plus three extra weights). In addition, however, the origi-
nal conjecture makes no restriction that (bn−1− (n− 1), . . . , b0) be p-restricted,
so occasionally, the original conjecture can predict a weight not predicted by
the new conjecture. Nevertheless, in all the examples of three-dimensional Ga-
lois representations investigated so far, the weights predicted by the original
conjecture are a proper subset of those predicted by the new conjecture. In
particular, all the computational evidence available for the original conjecture
also supports the strengthened conjecture.

2.7 Computational evidence for the conjecture

In order to provide computational evidence for the conjecture, we begin by
finding three-dimensional supersingular Galois representations, and determining
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their level, nebentype, and predicted weights. We then compute the appropriate
cohomology, and determine the action of the Hecke operators T (`, k) for all
` < 50. If we find a simultaneous eigenvector with the correct eigenvalues
(for all ` < 50) to correspond to ρ, then we claim to have evidence for the
conjecture. We remark that for computations in characteristics two and three,
we do not actually computeH3(Γ0(N), V ⊗ε), but rather a group which is closely
related. We note that by Shapiro’s Lemma, H3(Γ0(N), V ⊗ ε) ∼= H3(Γ,W ),
where Γ = SL3(Z), and W = IndΓ

Γ0(N)(V ⊗ ε). Using the natural duality
between homology and cohomology, this is then isomorphic to H3(Γ,W ). We
actually compute

H†
3(Γ,W ) = H3(∆,W )Γ

for ∆ a torsion free subgroup of finite index in Γ (note that the homology is
independent of the choice of ∆). The groupH†

3(Γ,W ) is isomorphic toH3(Γ,W )
in characteristics not equal to 2 and 3. For further details of the techniques used
for our cohomology computations, see [ADP02] and [AAC98].

In order to reduce the number of computations that are needed to obtain
evidence for the conjecture, we also make use of the fact that if a system of
eigenvalues corresponding to a representation ρ shows up in cohomology in
weight V , then the eigenvalues corresponding to the contragredient ρ∗ will show
up in the dual weight V ∗ ⊗ det−(n−1) [AS00, Prop. 2.8]. Hence, we only need
to compute the cohomology in one of V and V ∗ to determine the eigenvalues
appearing in both of them. This reduces the computations needed by a factor
of about two.

In the computational examples which follow, all group theoretical and num-
ber field calculations were performed using either Magma [BCP97] or GP/PARI
[The00].

3 Computational examples in characteristic two

In [APS04], surjective Galois representations ρ : GQ → GL3(F2) are described,
and computations are performed indicating that these representations are at-
tached to Hecke eigenclasses. Three of these examples are supersingular. For
each example, we obtain two contragredient representations, ρ and ρ∗. We see
easily that one of ρ and ρ∗ has m = 1 ≡ 0 + 2p+ p2 (mod 7) with p = 2. This
yields a prediction of F (0, 0, 0)†, so that the predicted weights include all the
possible weights. The other representation has m = 6 = 2+0p+p2, again yield-
ing a predicted weight of F (0, 0, 0)†. Computations done in [APS04] showed
that in each of the four possible weights, the correct eigenvalues appeared (for
` < 50) to have both ρ and ρ∗ attached to an eigenclass. These examples are
entirely consistent with the extended conjecture.
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Class 1 2 3 4 5 6
Order 1 2 3 4 7 7
χ0 1 1 1 1 1 1
χ1 3 −1 0 1 α ᾱ
χ2 3 −1 0 1 ᾱ α
χ3 6 2 0 0 −1 −1
χ4 7 −1 1 −1 0 0
χ5 8 0 −1 0 1 1

Table 1: Character Table of PSL2(F7)

4 Computational examples with small image

We now study three-dimensional Galois representations in characteristic 11 with
image isomorphic to PSL2(F7). This group (the unique simple group of order
168) has two nonconjugate embeddings in GL3(F̄11), as indicated by Table 1,
where α, ᾱ = 1±

√
−7

2 . Note that 11 is relatively prime to the order of PSL2(F7),
so that the standard complex character table corresponds to the modular char-
acter table.

Given a polynomial f(x) ∈ Z[x] with Galois group isomorphic to PSL2(F7),
set K/Q to be a splitting field of f(x), and define ρ by the composition

GQ
π−→Gal(K/Q) θ−→GL3(F̄11)

where π is the canonical projection, and θ is one of the two inequivalent embed-
dings of PSL2(F7) into GL3(F̄11). We will choose θ from the two possibilities in
order to give ρ certain desirable properties.

Suppose that in K/Q, the primes lying over 11 in K have ramification index
7. Then, regardless of the choice of θ, the image under ρ of the inertia group
at 11 has order 7. The restriction of ρ to inertia at 11 is then diagonalizable,
with diagonal characters ψ190

3,1 , ψ190
3,2 , ψ190

3,3 , or with diagonal characters ψ570
3,1 ,

ψ570
3,2 , ψ570

3,3 . We will choose θ so that the first of these cases holds. Using
the description of the predicted weights in Conjecture 2.10, we see that since
(modulo 113 − 1)

190 = 3 + 6(11) + 1(112)

= 14 + 5(11) + 1(112)

≡ 13 + 5(11) + 12(112)

≡ 12 + 5(11) + 23(112)

≡ 2 + 6(11) + 12(112)

≡ 2 + 17(11) + 11(112),
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we have predicted weights of

F (4, 2, 1), F (12, 4, 1), F (11, 11, 5), F (21, 11, 5), F (10, 5, 2), F (15, 10, 2).

In addition to these weights, we also obtain extra weights

F (11, 5, 1), F (14, 11, 2), F (20, 12, 5).

The conjecture predicts that each of these weights should yield eigenvalues cor-
responding to ρ. We now give two examples.
Example 4.1. [ADP02, Section 7.2] Let f = x7−11x5−22x4 +33x2 +33x+11.
This polynomial has Galois group PSL2(F7), and in its splitting field, 11 has
ramification index 7, as desired. Constructing ρ as above, we see [ADP02,
Section 7.2], that ρ has level 312 and trivial nebentype. As in [ADP02], we set
ρ′ = ρ ⊗ ε31, where ε31 is the quadratic character modulo 11 ramified only at
31. Then ρ′ has level 31, nebentype ε31, and the same restriction to inertia at
11 as ρ (since ε31 is not ramified at 11).

In [ADP02, Section 7.2], it was determined that eigenclasses with the cor-
rect eigenvalues (for ` < 50) to correspond to ρ′ existed in weights F (4, 2, 1),
F (11, 11, 5), and F (10, 5, 2) (which are the only weights predicted by the original
conjecture of [ADP02]). Subsequent computations have shown that the same
eigenvalues occur in each of the weights F (12, 4, 1), F (21, 11, 5), F (15, 10, 2),
F (11, 5, 1), F (14, 11, 2), and F (20, 12, 5). Hence each of the weights predicted
by the new conjecture works. In addition, computations in all other possible
weights modulo 11 show that these are the only weights in which the correct
eigenvalues appear. Hence, for this representation, the conjecture seems to be
complete and correct.
Example 4.2. Let f = x7−11x5−55x3−264x2−44x+176. The Galois group of
f is isomorphic to PSL2(F7). Let K/Q be a splitting field of f . Then in K/Q,
11 has ramification index 7 and 103 has ramification index 2. Constructing
ρ as above, we find that ρ has level 1032 and trivial nebentype. Twisting by
ε103, the unique quadratic character modulo 11 ramified only at 103, we obtain
ρ′ = ρ⊗ ε103, which has level 103 and nebentype ε103. As in example 4.1, ρ′ has
the same predicted weights as ρ. Because of the large level of this representation,
we have been unable to do exhaustive computations in all weights; nevertheless,
using the same techniques as in [ADP02, Section 7.2] we have been able to
calculate the trace and cotrace of Frobenius elements under ρ′, and confirm that
the correct eigenvalues do occur (for ` < 50) in weights F (4, 2, 1), F (12, 4, 1),
F (11, 11, 5), F (10, 5, 2) and F (11, 5, 1). In addition, we have computed the
homology in all weights F (a, b, c) with a − c < 11, and found that the correct
eigenvalues to correspond to ρ′ do not occur in any such weights except the
predicted ones. In other words, in every predicted weight in which we are able
to compute the cohomology, the correct eigenvalues occur, and in every other
weight in which we can compute the cohomology, the correct eigenvalues do not
occur.

We note that the two examples given here have very similar ramification
structures. Glen Simpson [Sim04] has performed a series of targeted Hunter
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searches to find other examples of PSL2(F7)-extensions ramified at 11 with
e = 7 and at one other prime q with e = 2. His search shows that there are no
examples besides these two with 3 ≤ q ≤ 103.

5 Computational examples coming from induced
representations

We give several examples of three-dimensional representations induced from a
ray class character of a non-Galois cubic field. The first of these examples was
already described in detail in [ADP02], but we give more computational evidence
for it. The other example is new.

5.1 General observations on induced representations

Let K be an S3 extension of Q and let F be a cubic subfield of K. Define
π : GQ → Gal(K/Q) to be the canonical projection. Suppose that p is an odd
prime having inertial degree 3 in K/Q, so that it is totally inert in F/Q. Assume
also that the class number of F is 1, and the ray class group of F modulo p is
cyclic of order r with r dividing (p3−1), but not dividing p2−1 or p−1. There
is then a ray class character modulo p

χ : GF → Fp3

having order r. There are in fact ϕ(r) such characters, χi where 1 ≤ i ≤ r and
(i, r) = 1.

We will define
ρi : GQ → GL3(F̄3)

by
ρi = IndGQ

GF
χi,

for 1 ≤ i ≤ r, and (i, r) = 1.

Theorem 5.1. Let ψ be a power of χ as defined above, and let ρ be the repre-
sentation induced from ψ, as above. Then ρ is an irreducible three-dimensional
representation, with the following properties:

1. ρ is supersingular, and the image of ρ|Ip,0 has order r,

2. If K/Q is ramified at a single odd prime q with ramification index 2, then
the level of ρ is q and its nebentype is εq, the unique quadratic character
modulo p ramified only at q,

3. If g ∈ GQ with π(g) having order 1, then ρ(g) has eigenvalues ψ(g−1
i ggi),

where the gi are coset representatives of GF in GQ,

4. For g ∈ GQ with π(g) having order 2, some conjugate g′ of g is in GF ,
Tr(ρ(g)) = ψ(g′), and T2(ρ(g)) = ψ(g′)−1 det(ρ(g)),
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5. For g in GQ with π(g) having order 3, Tr(ρ(g)) = T2(ρ(g)) = 0.

Proof. Let ψ be the power of χ induced to obtain ρ, and let L/F be the field
cut out by ψ. Then L/F is a cyclic extension of degree r, and is totally tamely
ramified above p. Denote by M the Galois closure of L/Q. M certainly contains
K, and is in fact generated by the conjugates of KL over K, each of which is
cyclic of order r. Hence, we see that Gal(M/K) is an abelian group of exponent
r, and that it contains at least one element of order r (since the inertia group
at p must be cyclic of order at least r). Now ρ|GF

contains ψ as an irreducible
constituent, so that GF ∩ ker ρ is contained in kerψ. Hence, by normality, ker ρ
fixes each conjugate of L/Q, so that ker ρ fixes M . However, we see easily that
ρ factors through Gal(M/Q), so that ker ρ = GM . This shows that the image
of inertia at p under ρ is of order r (since inertia at p has image of order r in
Gal(M/Q)), and so we see that ρ is supersingular.

Let g0, g1, and g2 be coset representatives of GF in GQ. Define ψ0 : GQ →
Fp3 by

ψ0(g) =

{
ψ(g) if g ∈ GF ,

0 otherwise.

Using the notation ggi = g−1
i ggi, we then have [FH91, pg. 34]

Tr(ρ(g)) =
2∑

i=0

ψ0(ggi).

Suppose that π(g) has order 1. Then g ∈ GK , so g and all of its conjugates
are in GF . From the definition of an induced representation, and the fact that
ggi = gi(g−1

i ggi), we obtain the given eigenvalues for ρ(g).
Suppose that π(g) has order 2. Then exactly one of the conjugates of g fixes

F . Call this conjugate g′. Neither of the two conjugates of g′ by g1 or g2 are in
GF , so

Tr(ρ(g)) = Tr(ρ(g′)) = ψ(g′).

The value of T2(ρ(g)) is then easily derived from the fact that Tr(ρ(g−1)) =
ψ(g′)−1 and the identity T2(ρ(g)) = Tr(ρ(g−1)) det(ρ(g)).

Suppose that π(g) has order 3. Then neither g nor either of its conju-
gates is contained in GF . Hence, we see that Tr(ρ(g)) = 0. In addition, g−1

and its conjugates are also not contained in GF . Since 0 = Tr(ρ(g−1)) =
T2(ρ(g))/det(ρ(g)), we see that T2(ρ(g)) = 0.

If K/Q is ramified only at q, with ramification index 2, let q be the unique
prime of F unramified over q, and let τ be a generator of the tame inertia group
at q. Then π(τ) = 2 and ψ(τ) = 1 (since the ray class character is unramified
at q), so Tr(ρ(τ)) = 1. Hence, the eigenvalues of ρ(τ) must be 1, 1, and −1, so
that ρ has level q and nebentype εq.
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5.2 Induced representations of level 59 modulo 7

As described in [ADP02, Section 7.1], let f = x3 − 2x + 1 and let α be a root
of f . Then F = Q(α) has ray class group modulo 7 of order 9, hence we may
choose a ray class character χ : GF → F73 of order 9, and get six distinct ρi.
These ρi each have level 59 with nebentype ε59 (the unique quadratic character
modulo 7 ramified only at 59). As mentioned in [ADP02], three of these have
m = 38 and three have m = 76. For the three with m = 38, we see that with
p = 7,

38 = 3 + 5p+ 0p2

≡ 2 + 5p+ 7p2 (mod 73 − 1)

≡ 9 + 4p+ 7p2 (mod 73 − 1)

≡ 2 + 12p+ 6p2 (mod 73 − 1)

≡ 8 + 4p+ 14p2 (mod 73 − 1)

≡ 10 + 4p+ 0p2 (mod 73 − 1).

The predicted weights are then F (3, 2, 0), F (5, 4, 2), F (7, 6, 4), F (10, 5, 2), F (12, 7, 4),
F (8, 3, 0), and the extra weights F (7, 4, 0), F (9, 6, 2), and F (11, 8, 4). Compu-
tations show that in all these weights there are eigenclasses with the correct
eigenvalues (for ` < 50) to correspond to each of the ρi with m = 38. Similarly
for each of the three representations with m = 76 (which are contragredients of
those with m = 38), we may compute the predicted weights, and we find that
each of the predicted weights yields an eigenclass with the desired eigenvalues
(for ` < 50). In addition, computations in all other weights modulo 7 prove
that the correct eigenvalues do not appear except in those weights predicted by
Conjecture 2.10. Note that the original conjecture of [ADP02] predicted only
the first three of the nine weights predicted here.

5.3 Induced representations of level 431 modulo 3

Let f = x3−x+8, set F = Q(α), where α is a root of f , and let K be a splitting
field of f containing α. Note that K/Q is an S3-extension ramified only at 431,
and that 431 has ramification index 2 in K/Q. In addition, 3 has inertial degree
3 in F/Q, and the ray class group mod 3 in F is cyclic of order 13. Then the
ray class field L has degree 13 over F , and Gal(L/F ) is cyclic of order 13. We
obtain 12 distinct representations ρ1, . . . , ρ12 by inducing characters of the ray
class group. These characters will take the form χi for some ray class character
χ, and 1 ≤ i ≤ 12, and we denote by ρi the representation induced from χi.
Each ρi is of niveau 3, with m even, and has level 431 and nebentype ε431, the
unique quadratic character modulo 3 ramified only at 431.

Note that squares of the fundamental characters ψ3,i mod 3 factor through
Gal(L/F ). We will identify the ψ2

3,i with the characters that they induce on
Gal(L/F ) and GF , and we will choose χ to equal ψ2

3,1. Then ρ1, ρ3, ρ9 will
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m = 2 F (1, 1, 1), F (1, 0, 0), F (3, 2, 0), F (3, 3, 1), F (5, 3, 1), F (2, 1, 0)
m = 4 F (1, 0, 0), F (2, 1, 0), F (3, 2, 0), F (4, 2, 1)
m = 8 F (1, 1, 1), F (2, 2, 1), F (3, 1, 1), F (4, 2, 1), F (5, 3, 1), F (2, 1, 0)
m = 14 F (2, 2, 1), F (2, 1, 0), F (3, 2, 0), F (4, 2, 1)

Table 2: Predicted weights for a three dimensional supersingular representation
modulo 3.

all have m = 2; ρ2, ρ6, ρ5 will have m = 4; ρ4, ρ12, ρ10 will have m = 8; and
ρ7, ρ8, ρ11 will have m = 14.

We are easily able to compute the predicted weights for each value of m. We
list these weights in Table 2. Note that the last entry in the m = 2 and m = 8
rows is an extra weight, rather than one predicted directly from the value of
m. Note also that for m = 4, F (4, 2, 1) is predicted, but F (2, 2, 1) (which is in
F (4, 2, 1)′ but not in F (4, 2, 1)†) is not predicted.

We will now determine the traces and cotraces of Frobenius elements under
each ρi.

We begin by determining ζ = χ(Frobq) = ψ2
3,1(Frobq), where q is the unique

degree one prime of F lying over 7. To do this, we use the Hilbert Symbol from
class field theory [Neu99, Chapter V.3] with n = 13. Since F has class number
1, we may find a generator a of q, and we note that 3 generates the unique
prime p of F lying over 3. We denote the completion of F at p by Fp, and
the completion of L at the unique prime of L lying over p by Lp. Note that Fp

contains µ13, and that Lp = Fp(31/13). The Hilbert symbol satisfies the relation
[Neu99, V.3.1] (

a, 3
p

)
=
σa(31/13)

31/13
= ψ2

3,1(σa),

where σa is given by the local norm residue symbol (a, Lp/Fp). Then by [Neu99,
V.3.4], we see that (

a, 3
p

)
≡

(
1
a

)2

(mod p).

Hence, in order to determine ψ2
3,1(Frobq), we need only determine the relation-

ship between Frobq and (a, Lp/Fp). By [Neu99, pp. 406–407], we see that
Frobq = (a, Lq/Fq), where Fq is the completion of F at q, and Lq is the com-
pletion of L at some prime lying over q. By [Neu99, Cor. VI.5.7], we see that
for the principal idele (a),

1 = ((a), L/F ) =
∏
s

(a, Ls/Fs) = (a, Lq/Fq)(a, Lp/Fp),

where the product runs over all primes s of F , and Ls is the completion of L at
some prime over s. Note that most of the terms drop out, since, for s 6= p, q, we
have that Ls/Fs is unramified and a is a unit in Fs. We see immediately that
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p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
o(π(Frobp)) 1 * 3 2 3 2 2 3 3 3 2 2 1 2 2
Tr(ρ1(Frobp)) α * 0 ζ 0 ζ9 ζ8 0 0 0 ζ11 ζ7 γ ζ12 ζ3

T2(ρ1(Frobp)) β * 0 −ζ12 0 −ζ4 −ζ5 0 0 0 −ζ2 −ζ6 δ −ζ −ζ10

Table 3: Traces and cotraces: α = ζ5+ζ10+ζ11, β = ζ2+ζ3+ζ8, γ = ζ6+ζ6+ζ,
δ = ζ7 + ζ7 + ζ12.

(a, Lp/Fp) = Frob−1
q , so that

ζ = Tr(ρ1(Frobq)) = χ(Frobq) = ψ2
3,1(Frobq) ≡ a2 (mod p).

Using GP/PARI to do computations in F , we find that ζ is a root of the
cubic polynomial x3 + 2x + 2 over F3. Note that Tr(ρ3(Frobq)) = ζ3 and
Tr(ρ9(Frobq)) = ζ9 are also roots of this same polynomial.

We now use the canonical isomorphism from Gal(L/F ) to the ray class group
which, for any prime r of F not dividing (3), takes Frobr to the class of r. Hence,
we may determine the image of Frobr in terms of the image of Frobq by finding
r as a power of q in the ray class group. This is easily done using GP/PARI’s
facilities for computation in ray class groups (or we could do calculations using
the Hilbert symbol, as above).

We find that the primes ` ∈ {7, 13, 17, 31, 37, 43, 47} each have inertial de-
gree 2 in K/Q. Hence, each has a unique degree one prime lying over it in F ,
which we will denote by q`. We have then defined ζ = χ(Frobq7). Using the
bnrisprincipal command in GP/PARI, we find that χ(Frobq13) = ζ9, since
q13 is a ninth power of q7 in the ray class group. Similarly, χ(Frobq17) = ζ8,
χ(Frobq31) = ζ11, χ(Frobq37) = ζ7, χ(Frobq43) = ζ12, and χ(Frobq47) = ζ3. Us-
ing the fact that the determinant of ρi is ω2iε431 = ε431, and that ε431(Frob`) =
−1 for these primes, we may use Theorem 5.1 to compute the trace and cotrace
of ρ1(Frob`) for each of these primes.

Note that the primes ` ∈ {3, 5, 11, 19, 23, 29} each have inertial degree of
order 3 in K/Q. We see immediately by Theorem 5.1 that for all i, the trace
and cotrace of ρi(Frob`) for any of these primes are both 0.

The primes 2 and 41 each split completely in K/Q. Hence, for p = 2 or p =
41, there are three primes p1, p2, p3 above p in F . The three conjugacy classes
Frobpi

are conjugate inGQ, but not inGF . Hence using the coset representatives
e, g1, g2 of GF in GQ as in Theorem 5.1, we may obtain the three character
values χ(Frobpi), χ(Frobg1

pi
), and χ(Frobg2

pi
) by computing the classes of p1, p2,

and p3 in the ray class group in terms of q7. We find for p = 2 that these three
character values are ζ5, ζ10, and ζ11. Hence Tr(ρ1(Frob2)) = ζ5 +ζ10 +ζ11, and
T2(ρ1(Frob2)) = ζ2 + ζ3 + ζ8. For p = 41, we find Tr(ρ1(Frob41)) = ζ6 + ζ6 + ζ,
and T2(ρ1(Frob41)) = ζ7 + ζ7 + ζ12.

We summarize our computations for ρ1 in Table 3. We note that we may
read the traces and cotraces of Frobenius elements under ρi directly from Table 3
by replacing ζ by ζi.
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We have done the homology calculations in level 431 with quadratic neben-
type for all weights modulo 3. In each of the weights predicted for m = 2, we
found three eigenclasses, conjugate over F3, with the correct eigenvalues (for
` < 50) to correspond to ρ1, ρ3, and ρ9. In all of the weights not predicted for
m = 2, no such eigenclasses were found.

Similarly, in exactly the weights predicted for m = 4, we found eigenclasses
corresponding to ρ2, ρ6, and ρ5, in exactly the weights predicted for m = 8
we found eigenclasses corresponding to ρ4, ρ12, ρ10, and in exactly the weights
predicted for m = 14, we found eigenclasses corresponding to ρ7, ρ8, and ρ11.
These computations exactly match what we expect from Conjecture 2.10.
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