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Abstract. We compute the action of Hecke operators on tensor products

of cohomology classes of lower congruence subgroups of SL(n,Z) in trivial
weight. We use this computation to prove that if each representation in a

collection of Galois representations is attached to a cohomology class of a

lower congruence subgroup in trivial weight, then a sum of certain twists of the
representations consistent with the main conjectures of [5, 10] is also attached

to such a cohomology class.

1. Introduction

Define a Galois representation to be a continuous homomorphism ρ : GQ →
GL(n,K), where GQ is the absolute Galois group of Q, and K is a topological field
(which may be discrete).

There are conjectures connecting certain Galois representations (with K a finite
field) with eigenclasses of Hecke operators acting on arithmetic cohomology [10, 5,
14]. Computational evidence for these conjectures has been given in the case n = 3
[5] and n = 4 [6, 7, 8], and special cases of these conjectures have been proven for
reducible Galois representations [2, 3, 4].

Let Γ be a congruence subgroup of SL(n,Z) of level N . Define the Hecke algebra
KHΓ to be the commutative K-algebra under convolution generated by all the
double cosets T (`, k) = ΓD(`, k)Γ with

D`,k = diag(1, · · · , 1︸ ︷︷ ︸
n−k

, `, · · · , `︸ ︷︷ ︸
k

).

such that ` - N .
An algebra homomorphism φ : KHΓ → K will be called a K-Hecke packet. For

example, if W is a KHΓ-module, and w ∈ W is a simultaneous eigenvector for all
T ∈ KHΓ, then the associated eigenvalues give a K-Hecke packet, called a K-Hecke
eigenpacket that “occurs” in W .

Definition 1.1. Let φ be a K-Hecke packet, with φ(T (`, k)) = a(`, k). We define
the Hecke polynomial for φ at ` to be

Fφ,`(X) =

n∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk

for any prime ` - N .
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Definition 1.2. Let φ be a K-Hecke packet, with φ(T (`, k)) = a(`, k). We say that
the Galois representation ρ : GQ → GL(n,K) is attached to φ if for some M ≥ 1,
ρ is unramified outside MN and

det(I − ρ(Frob`)X) = Fφ,`(X)

for all prime ` -MN .
If the Hecke packet comes from a Hecke eigenvector w ∈ W , where W is a

K-vector space on which KHΓ acts, we will say ρ is attached to w and fits W .

(We use the arithmetic Frobenius, so that if ω is the cyclotomic character, ω(Frob`) =
`.)

A theorem of Scholze [15] asserts that for any finite field F, any F-Hecke packet
occurring in the homology or cohomology of a congruence subgroup of SL(n,Z) with
F-coefficients has a Galois representation attached. In this paper, we prove a theo-
rem allowing us to combine Galois representations that are attached to eigenclasses
of Hecke operators acting on the cohomology of lower congruence subgroups (see
Definition 3.1) into a larger Galois representation that is attached to an eigenclass
in the cohomology of a related lower congruence subgroup. This give information
about the relations between the Galois representations and the eigenclasses pro-
vided by Scholze’s result, and the details are consistent with the predictions of
[5].

Our main theorem (Theorem 7.3) asserts that if we have a collection ρi : GQ →
GL(ni, F ) of Galois representations (1 ≤ i ≤ t), with each ρi attached to a coho-
mology eigenclass fi on a lower congruence subgroup ∆i ⊂ SL(ni,Z) with trivial
coefficients, then we may construct a lower congruence subgroup ∆0 ⊂ SL(n,Z)
with n = n1 + · · ·+nt, and a Hecke eigenclass h on ∆0 with trivial coefficients such
that

ρ1 ⊕ ωn1ρ2 ⊕ · · · ⊕ ωn1+···nt−1ρt

is attached to h.
Our proofs will build on the construction of tensor product cohomology classes in

[1], and use Borel-Serre duality [11] (as improved by [12, p. 280]), and the sharbly
and cosharbly complexes [1, 9].

It would be interesting (but probably quite difficult) to try to generalize the the-
orem to the case where the fi lie in cohomology groups with nontrivial coefficients.

We note that the main theorem does not directly prove cases of the main con-
jecture of [5], since the congruence subgroup used in [5] will typically not be part
of a lower compatible system (as defined in Definition 3.3).

2. Sharblies and cosharblies

Let n > 1 and let Qn denote the vector space of n-dimensional column vectors
with entries in Q.

Definition 2.1. [1, 9] The Sharbly complex Sh∗ is the complex of ZGL(n,Q)-
modules defined as follows. As an abelian group, Shk is generated by symbols
[v1, . . . , vn+k], (which we will call basic k-sharblies) where the vi are nonzero vectors
in Qn, modulo the submodule generated by the following relations:

(i) [vσ(1), . . . , vσ(n+k)]− (−1)σ[v1, . . . , vn+k] for all permutations σ;
(ii) [v1, . . . , vn+k] if v1, . . . , vn+k do not span all of Qn; and
(iii) [v1, . . . , vn+k]− [av1, v2, . . . , vn+k] for all a ∈ Q×.
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The boundary map ∂ : Shk → Shk−1 is given by

∂([v1, . . . , vn+k]) =

n+k∑
i=1

(−1)i[v1, . . . , v̂i, . . . vn+k],

where as usual v̂i means to delete vi.
The action of g ∈ GL(n,Q) on a basic sharbly is given by g[v1, . . . , vn+k] =

[gv1, . . . , gvn+k] and extended to all sharblies by linearity.

Of course, all these objects depend on n, which we suppress from the notation,
allowing the context to determine n.

The sharbly complex gives a resolution

· · · → Shi → Shi−1 → · · · → Sh1 → Sh0 → St(n)→ 0

by GL(n,Q)-modules of the Steinberg module St for GL(n)/Q [9]. Therefore, if
K is a field and if Γ is a congruence subgroup of GL(n,Z), the ith homology of
the complex Sh∗⊗ΓK is isomorphic to Hi(Γ,St(n) ⊗ K). The duality theorem
of Borel-Serre [11], extended in [12], tells us that Hi(Γ,St(n) ⊗ K) is isomorphic
to Hn(n−1)/2−i(Γ,K) for any field K of characteristic greater than n + 1 or of
characteristic 0.

We now fix a field K and write St instead of St(n)⊗K and Shi instead of Shi⊗K.
Let a superscript ∨ denote dual of K-vector spaces. Then

0→ St ∨ → Sh ∨0 → Sh ∨1 → · · ·
is a co-resolution of right modules. The elements of Sh ∨k are called k-cosharblies;
they are K-linear K-valued antisymmetric functions on k-sharblies. The cobound-
ary map in this coresolution is given by δf = f ◦ ∂ (see [1, Section 1]).

The homology of (Sh∗)Γ computes H∗(Γ,St). Similarly, the homology of (Sh ∨∗ )
Γ

computes H∗(Γ,St ∨). By Kronecker duality, there is a perfect pairing 〈·, ·〉 between
H∗(Γ,St) andH∗(Γ,St ∨). The first vector space is finite dimensional by Borel-Serre
duality, and hence so is the second. We call a cycle in (Sh∗)Γ a sharbly Γ-cycle,

and a cocycle in (Sh ∨∗ )
Γ

a cosharbly Γ-cocycle. Given a sharbly Γ-cycle A (resp. a

cosharbly Γ-cocycle f), we will denote by Ã (resp. f̃) its image in the homology of
Γ (resp. in the cohomology of Γ).

Let 1 ≤ m ≤ n − 1. Denote by {e1, . . . , en} the standard basis vectors of Qn,
considered as column vectors. Let Wm be the span of the set {e1, . . . em}, and let
Ym be the span of the set {em+1, . . . , en} in Qn. Using this notation, we make the
following definition.

Definition 2.2. A basic k-sharbly is said to be (i,m)-reducible if after permutation
of its vectors, it is of the form [w1, . . . , wm+i, y1, . . . , yn+k−m−i] where w1, . . . , wm+i

are vectors in Wm.
Given an (i,m)-reducible basic sharbly C = [w1, . . . , wm+i, y1, . . . , yn+k−m−i],

we may extract the sequence A = (w1, . . . , wm+i) which we will call the Wm-
component of C. We will call the sequence B = (y1, . . . , yn+k−m−i) the remaining
component of C.

A k-sharbly will be said to be (i,m)-reducible if it is a sum of (i,m)-reducible
basic k-sharblies.

We note that we may consider the Wm-component A of an (i,m)-reducible ba-
sic sharbly as an i-sharbly for GL(m). Also, denoting projection from Qn →
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Ym by a prime, we may view the projection of the remaining component B′ =
(y′1, . . . , y

′
n+k−m−i) as a j-sharbly for GL(n−m), where j = k − i

3. Lower congruence subgroups

Definition 3.1. A primary lower congruence subgroup ∆ of SL(n,Z) is a subgroup
of SL(n,Z) defined by

∆ = {g ∈ SL(n,Z) | g mod N ∈ P (Z/N)}
where P is an algebraic subgroup of GL(n) that is either all of GL(n) or a parabolic
subgroup which contains the upper triangular matrices, and N is a positive integer.

The level of ∆ is the integer N .
A lower congruence subgroup ∆ of SL(n,Z) is a finite intersection of primary

lower congruence subgroups of levels N1, . . . , Nk (with possibly varying P ’s). The
level of ∆ is the least common multiple of N1, . . . , Nk.

For example, the group Γ0(n,N) ⊂ SL(n,Z) consisting of the matrices which
modulo N stabilize (Z/N)e1 is a lower congruence subgroup.

We now give a definition from [1], modified slightly to account for the fact that
the subgroups in which we are interested lie in SL(n), rather than GL(n).

Definition 3.2. Let n = n0 = n1 + · · · + nt, Γi a subgroup of SL(ni,Z) for
i = 0, . . . , t. Let e1, . . . , en be the standard basis vectors of U = Qn, let V1 be the
span of {e1, . . . , en1

}, and for 1 < i ≤ t let Vi be the span of

{ej | n1 + · · ·+ ni−1 + 1 ≤ j ≤ n1 + · · ·+ ni}.
Set Fm = V1+V2+· · ·+Vm and let F denote the flag (0) ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Ft = U .
We identify GL(ni,Z) with the subgroup of GL(n,Z) which act trivially on Vj for
j 6= i and which stabilize Vi.

We say that the set {Γ0,Γ1, . . . ,Γt} is compatible if
(i) Γ0 ⊃ Γ1 × · · · × Γt;
(ii) The stabilizer of F in Γ0 projected onto GL(n1,Z) × · · · × GL(nt,Z) and

then intersected with SL(n1,Z)× · · · × SL(nt,Z) lies in Γ1 × · · · × Γt;
(iii) If v ∈ V1 ∪ V2 ∪ · · · ∪ Vt and γ ∈ Γ0 and γv ∈ Fm for some m, then already

v ∈ Fm.

We now define a specific example of a compatible set of subgroups, which we
will use throughout the rest of the paper.

Definition 3.3. For i = 1, . . . , t let ∆i be a lower congruence subgroup of SL(ni,Z)
of levelNi. LetN be divisible by the least common multiple of theNi and n =

∑
ni.

Set ∆0 = ∆0(N) equal to the set of matrices in SL(n,Z) which when written in
n1, . . . , nt block form satisfy

(1) Any block below the diagonal blocks is congruent to 0 modulo N ;
(2) The i-th diagonal block modulo N is contained in the image of ∆i modulo

N .
We call the system ∆0,∆1, . . . ,∆t a lower compatible system.

Of course, ∆0(N) depends on ∆1, . . . ,∆t, even though we omit them from the
notation.

Proposition 3.4. Given lower congruence subgroups ∆i of level Ni, as above, and
an integer N divisible by all the Ni, the subgroup ∆0(N) is a lower congruence
subgroup.
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Proof. For each parabolic subgroup P used in the definition of ∆i, let NP be the

corresponding level, and let P̂ be the parabolic subgroup that is (n1, . . . , nt)-block
upper triangular, with GL(nj) in the j-th diagonal block for j 6= i, and P in the

ith block. Let P̃ be the primary lower congruence subgroup defined by P̂ modulo
NP . Let Q be the parabolic subgroup of block upper triangular matrices, and let

Q̃ be the primary lower congruence subgroup corresponding to Q modulo N . Set

∆ = Q̃∩
⋂
P,i P̃ . Then ∆ is a lower congruence subgroup of level N . We will show

that ∆ = ∆0.
Given M ∈ ∆, it is clear that M satisfies condition (1) of Definition 3.3. Further,

the ith diagonal block of M modulo N is in ∆i modulo N , since reducing it further

modulo NP (which divides N) yields a matrix in P̂ (Z/NP ) for each P defining ∆i.
Hence ∆ ⊆ ∆0(N).

Given a matrix M ∈ ∆0(N), condition (1) implies that M lies in Q̃. Also, since
the ith diagonal block of M lies in ∆i modulo N , we see that it must lie in P
modulo NP (since any element of ∆i lies in P modulo NP and NP |N) for each P

used in defining ∆i. Hence M lies in P̃ . Therefore, M ∈ ∆, so ∆0(N) ⊆ ∆. �

Lemma 3.5. Given lower congruence subgroups ∆i of level Ni, as above, and an
integer N divisible by all the Ni, the system ∆0(N),∆1, . . . ,∆t defined in Defini-
tion 3.3 is compatible if N > 1.

Proof. Property (i) of a compatible system is clear. For property (ii), we note that
an element of the stabilizer of F is block upper triangular. The diagonal blocks must
all have determinant ±1. If they all have determinant 1, they must (by part (2) of
the definition of ∆0(N)) be congruent modulo N to an element of ∆i. However,
one checks easily that any matrix of determinant 1 that is congruent to an element
of ∆i modulo N actually lies in ∆i.

For (iii), suppose v ∈ Vr, γ ∈ ∆0(N) and γv ∈ Fm. We may assume that v 6= 0.
We must show that r ≤ m. Suppose to the contrary that r > m. In block diagonal
form write γ = (γij) and v = (vi). Then vi = 0 if i 6= r, vr 6= 0 and (γv)j = γjrvr.
Now γv ∈ Fm implies that γjrvr = 0 for all j > m. In particular γrrvr = 0. But
γrr has a nonzero determinant (as may be observed by reducing γ modulo N) and
this gives the desired contradiction. �

4. Review and modification of the unstable construction

We will now review the main construction of [1]. Because we are using shar-
blies and cosharblies over Q (to allow the computation of Hecke operators), and
because we have changed the definition of compatibility, we must slightly alter the
construction.

By induction, we only need to consider the case of a compatible system with two
blocks. Let t = 2, and set n = n1 + n2. Let ∆1 be a lower congruence subgroup in
SL(n1,Z) and ∆2 be a lower congruence subgroup in SL(n2,Z). Fix ∆0(N) = ∆0

in SL(n,Z) as in Definition 3.3. Then ∆0,∆1,∆2 is a compatible system. Recall
that V1 is the span of the first n1 standard basis vectors, and V2 is the span of the
remaining standard basis vectors, and let U = Qn.

Definition 4.1. With respect to the compatible system ∆0(N),∆1,∆2:

(1) A subset M of U is pliable if there exists γ ∈ ∆0(N) such that γM spans
V1 over Q. If so, we say γ plies M .
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(2) If M = {m1, . . . ,mr} is a sequence of vectors in U , set

P(d,M) = {S ⊂ {1, . . . , r}|{mi | i ∈ S} is pliable and |S| = d}.

For k = i + j, we now give a construction of a k-cosharbly for GL(n) from an
i-cosharbly and a j-cosharbly.

Definition 4.2. Given the compatible system ∆0(N),∆1,∆2, assume that N ≥ 3.
Let f be a ∆1-invariant i-cosharbly and let g be a ∆2-invariant j-cosharbly. Then
f is a function of n1 + i vectors in V1 and g is a function of n2 + j vectors in V2.
We extend g to be 0 if any vector in its argument is 0. We denote by a prime
the natural projection of U to V2. Define h = hf,g by extending linearly the map
h : (Qn)n+i+j → Q given by

h(m1, . . . ,mn+i+j)

=
∑
S

(−1)σSf(γSmσS(1), . . . , γSmσS(n1+i))g((γSmσS(n1+i+1))
′, . . . , (γSmσS(n))

′)

where S runs over P(n1 + i, {m1, . . . ,mn+i+j}), and for each S we choose a per-
mutation σS such that {σS(1), . . . , σS(n1 + i)} = S and a γS ∈ ∆0(N) such that
γS plies {mσS(1), . . . ,mσS(n1+i)}.

Lemma 4.3. The h defined in Definition 4.2 is independent of the choices of σS
and γS and is a k-cosharbly.

Proof. Since f and g are antisymmetric, we see that the choice of a σS for each set
S does not change the value of h.

We now show that the choices of γS do not change the value of h. For simplicity
of notation, suppose that σS is the identity. Suppose γS and δS are two elements
of ∆0(N) that ply {m1, . . . ,mn1+i}. We claim that

f(γSm1, . . . , γSmn1+i)g((γSmn1+i+1)′, . . . , (γSmn)′)

and
f(δSm1, . . . , δSmn1+i)g((δSmn1+i+1)′, . . . , (δSmn)′).

are equal. To see this, let wr = γSmr for r = 1, . . . , n + i + j, and let ε = δSγ
−1
S .

Since γ−1
S maps V1 to the span of {mi : i ∈ S}, and δS maps this span back to V1, we

see that ε stabilizes V1. Hence, ε is block upper triangular. If we denote the block
diagonal components of ε by ε1 and ε2, we have (by property (2) of Definition 3.3)
that each εi is congruent modulo N to a matrix in ∆i. Since N ≥ 3 and det(εi) is a
unit in Z, and matrices in ∆i have determinant 1, we see that det(εi) = 1. Finally,
since the ∆i are defined solely by congruence conditions modulo divisors of N and
the requirement of being in SL(ni,Z), we deduce that ε1 and ε2 are in ∆1 and ∆2,
respectively.

Now since f and g are invariant under ∆1 and ∆2, respectively, we see that

f(γSm1, . . . , γSmn1+i)g((γSmn1+i+1)′, . . . , (γSmn+i+j)
′)

= f(w1, . . . , wn1+i)g(w′n1+i+1, . . . , w
′
n+i+j)

= f(ε1w1, . . . , ε1wn1+i)g(ε2(wn1+i+1)′, . . . , ε2(wn+i+j)
′)

= f(εw1, . . . , εwn1+i)g((εwn1+i+1)′, . . . , (εwn+i+j)
′)

= f(δSm1, . . . , δSmn1+i)g((δSmn1+i+1)′, . . . , (δSmn+i+j)
′)

as desired.
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To see that h is a cosharbly, we must also check that if m1, . . . ,mn do not span
U then h(m1, . . . ,mn) = 0. This follows exactly as in [1, p. 336]. �

We now wish to show that if f and g are cosharbly cocycles, then hf,g is a
cosharbly cocycle, and that if f and g are not coboundaries, then hf,g is not a
coboundary. Clearly a ∆-invariant cosharbly cocycle f is not a coboundary if and
only if there is a sharbly ∆-cycle A such that f(A) 6= 0. Hence, given an i-sharbly
∆1-cycle A with f(A) nonzero, and a j-sharbly ∆2-cycle B with g(B) nonzero, we
wish to construct a k-sharbly ∆0-cycle C with h(C) nonzero.

Definition 4.4. Let A =
∑
v rv[v] and B =

∑
w sw[w] be respectively an i-sharbly

for GL(n1) and a j-sharbly for GL(n2). A lift of B will be any formal sum B∗ =∑
w sw[w∗] where the projection of each Qn-vector in w∗ equals the corresponding

vector in w.
Given a lift B∗ of B, we define the (i+ j)-sharbly for GL(n)

A⊗B∗ =
∑
v,w

rvsw[v, w∗].

(where v can be viewed in V1 or in U since we have embedded V1 into U as the
span of e1, . . . , en1 .) We call A⊗B∗ a tensor sharbly.

We will also set B† =
∑
w sw[w†] to be a specific lift of B, namely the one

where each vector in w† in (n1, n2)-block form has first component 0 and second
component w.

Proposition 4.5. Let ∆0,∆1,∆2 be a lower compatible system of groups. If A is
an i-sharbly ∆1-cycle, and B is a j-sharbly ∆2-cycle, then the tensor sharbly A⊗B†
is an (i+ j)-sharbly ∆0-cycle.

Proof. This is proved in [1, p. 335]. �

Proposition 4.6. Let ∆0,∆1,∆2 be a lower compatible system of groups. Let f
be an i-cosharbly ∆1-cocycle and let g be a j-cosharbly ∆2-cocycle. Then hfg is an
(i+ j)-cosharbly ∆0-cocycle.

Proof. This follows from [1, pp. 336-338]. �

Theorem 4.7. Let A be an i-sharbly for GL(n1), let B be a j-sharbly for GL(n2),
and let B∗ be any lift of B. Suppose also that f is a ∆1-invariant i-cosharbly and
g is a ∆2-invariant j-cosharbly. Then

hfg(A⊗B∗) = f(A)g(B).

Proof. Let A =
∑
v rv[v], B =

∑
w sw[w], and B∗ =

∑
sw[w∗]. Then

A⊗B∗ =
∑
v,w

rvsw[v, w∗].

We compute h([v, w∗]) for each term of this sum. Let γ ∈ ∆0(N) and suppose that
some vector in γw∗ is contained in V1. By property (iii) of a compatible system,
this implies that the corresponding vector of w∗ is in V1, which implies that the
corresponding vector in w is 0. This is a contradiction (because sharblies are not
allowed to have the zero vector as components), so we see that the only pliable
sets of vectors among the columns of [v, w∗] are the subsets of v. Hence, P(n1 +
i, v1, . . . , w∗,n+i+j) consists of the single set S = {1, . . . , n1 + i} (corresponding to
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the pliable set of vectors {v1, . . . , vn1+1}). Therefore, when we compute hfg([v, w∗]),
there is only one term in the sum, we may take σS = 1 and γS = 1, and we obtain
hfg([v, w∗]) = f(v)g(w′∗) = f(v)g(w). It follows by linearity of hfg, f , and g, that

hfg(A⊗B∗) = hfg

(∑
v,w

rvsw[v, w∗]

)
=
∑
v,w

rvswhfg([v, w∗])

=
∑
v,w

rvswf(v)g(w)

=

(∑
v

rvf(v)

)(∑
w

swg(w)

)
= f(A)g(B).

�

Corollary 4.8. In the construction of hfg, assume that f and g are not cobound-
aries. Then hfg is not a coboundary.

Proof. Recall that a cosharbly ∆-cocycle is a coboundary if and only if it vanishes
on all sharbly ∆-cycles.

Since f is not a coboundary, there exists an i-sharbly ∆1-cycle A with f(A) 6= 0.
Since g is not a coboundary, there exists a j-sharbly ∆2-cycle B with g(B) 6=
0. By Proposition 4.5, A ⊗ B† is an (i + j)-sharbly ∆0-cycle. By Theorem 4.7
hfg(A⊗B†) = f(A)g(B) is nonzero, so hfg is not a coboundary. �

5. Hecke operators

We have the sharbly complex (Sh, ∂) and the cosharbly cocomplex (Sh ∨, δ).
The group GL(n,Q) acts on Sh by g[x1, . . . , xk] = [gx1, . . . , gxk]. It acts on Sh ∨

by the defining formula (hg)(A) = h(gA) for g ∈ GL(n,Q) and A a sharbly. We
will also write this as

〈hg,A〉 = 〈h, gA〉

where g ∈ GL(n,Q), h ∈ Sh ∨ and A ∈ Sh.
Let Γ be a subgroup of GL(n,Q). A Γ-sharbly is an element in the coinvariants

H0(Γ,Sh). A Γ-cosharbly is an element in the invariants H0(Γ,Sh ∨). They are
paired naturally by the same pairing 〈·, ·〉. It is a perfect pairing.

Let T = ΓsΓ where s ∈ GL(n,Q). Then T acts as a Hecke operator on Γ-
sharblies A and Γ-cosharblies h as follows. Write T =

∐
α Γsα. Then h|T =

∑
α hsα

and TA =
∑
α sαA. One easily checks as usual that these formulas give well-defined

operators that do not depend on the choice of coset representatives.
We thus get an action of the Hecke operators on the coinvariant sharbly complex

and the invariant cosharbly complex, and hence on the homology of these complexes.
This action induces the usual Hecke operators on the (co)homology of Γ.

One reason for using lower congruence subgroups in this paper is that the Hecke
representatives sα can be taken to be the upper triangular ones we normally use
for SL(n,Z).
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Lemma 5.1. Let Γ be a lower congruence subgroup of SL(n,Z). Then

ΓD`,kΓ =
∐
α

Γsα

where the sα run over matrices M which satisfy the following conditions:
(i) M is upper triangular with 1′s and `′s along the diagonal;
(ii) there are exactly k `’s on the diagonal of M ;
(iii) the upper triangular entries of M are 0 except for those Mab for a < b where

Maa = 1 and Mbb = `, in which case Mab is an integer from 0 to `− 1 inclusive.

Proof. The lemma is well known if Γ = SL(n,Z). In general, this implies that the
cosets on the right are distinct. Now suppose x ∈ ΓD`,kΓ. Then again from the
level 1 case we have that x = δM for some δ ∈ SL(n,Z) and some M as described
in the lemma. However, since D`,k is upper triangular (in fact it is diagonal), x
satisfies the same lower congruence conditions that define Γ and since M is upper
triangular, δ must satisfy all the same lower triangular congruences as well. In
other words, δ ∈ Γ. �

Remark. If Γ is not a lower-congruence subgroup, the conclusion of Lemma 5.1
would no longer follow. For example, if Γ = Γ1(N) for N > 2 it will be necessary
to choose sα’s which are not upper triangular. Such sα’s would not preserve the
set of (i,m)-reducible sharblies, and our method below would fail to compute the
action of the Hecke operators on the cosharbly h which we will define.

We are going to state and prove a formula relating Hecke operators in three
different dimensions. Some of our previous notation left the size of the matrices
unstated. Now, if necessary, indicate the size of an m×m matrix by a superscript
m.

Let n = n1 + n2 and let Γ,Γ1,Γ2 be a compatible set of lower congruence
subgroups as above. We have

Tn`,k = ΓDn
`,kΓ =

∐
α

Γsnk,α

with the snk,α as described in lemma 5.1.
Let us write

Tn1

`,i = Γ1D
n1

`,iΓ1 =
∐
β

Γ1s
n1

i,β

and

Tn2

`,j = Γ2D
n2

`,jΓ2 =
∐
ζ

Γ2s
n2

j,ζ

Then we can enumerate the set {snk,α} of coset representatives of Tn`,k as follows,

using (n1, n2)-block form: ⋃{(
sn1

i,β M

0 sn2

j,ζ

)}
where the union runs over pairs of coset representatives sn1

i,β of Tn1

`,i and coset rep-

resentatives sn2

j,ζ of Tn2

`,j with 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, and i + j = k, and over all
M which cause the resulting matrix to satisfy the conditions of Lemma 5.1. For a
given choice of i, j, β, ζ, the possible M will have (n1− i)j entries which range from
0 to `− 1 inclusive, with the remaining entries being 0.
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Motivated by this enumeration of the snk,α’s we make the following definition:

Definition 5.2. Let φ, φ1, φ2 be characters of the Hecke algebras K[Tn`,k], K[Tn1

`,i ],

and K[Tn2

`,j ], respectively, such that

φ(Tn`,k) =
∑
i+j=k

`(n1−i)jφ1(Tn1

`,i )φ2(Tn2

`,j ).

Then we say that φ is Hecke-reducible into (φ1, φ2).

Remark. Because of the enumeration of the snk,α’s above, and the way the coshar-
bly h is defined, we will see that the Hecke eigenvalues on h restricted to a certain
set of (i, n1)-reducible sharblies define a Hecke-reducible character.

Lemma 5.3. If φ is Hecke-reducible into (φ1, φ2), then the corresponding Hecke
polynomials (recall Definition 1.1) satisfy the equation

Fφ,`(X) = Fφ1,`(X)Fφ2,`(`
n1X)

Proof. Write an`,k = φ(Tn`,k) and similarly for the values of φ1 and φ2. The left hand
side of the desired equation equals

n∑
k=0

(−1)k`k(k−1)/2an`,kX
k =

n∑
k=0

(−1)k`k(k−1)/2Xk
∑
i+j=k

`(n1−i)jan1

`,ia
n2

`,j

whereas the right hand side equals(
n1∑
i=0

(−1)i`i(i−1)/2an1

`,iX
i

) n2∑
j=0

(−1)j`j(j−1)/2+n1jan2

`,j)X
j


=

n∑
k=0

(−1)kXk
∑
i+j=k

`i(i−1)/2+j(j−1)/2+n1jan1

`,ia
n2

`,j .

Comparing terms for a given k and a given pair (i, j) with i+ j = k, we must prove
that

`k(k−1)/2+(n1−i)jan1

`,ia
n2

`,j = `i(i−1)/2+j(j−1)/2+n1jan1

`,ia
n2

`,ij .

This is true because the exponents of ` on the two sides are equal. �

Corollary 5.4. If a character φ on the Hecke algebra K[{Tn`,i}] is Hecke reducible

into (φ1, φ2), with each φj a character of K[{Tnj

`,i }], and each φj has an attached
Galois representation σj, then φ is attached to the Galois representation

ρ = σ1 ⊕ ωn1σ2.

Proof. We have

ρ(Frob`) =

(
`n1σ2(Frob`) 0

0 σ1(Frob`)

)
so that

det(I − ρ(Frob`)X) = det(I − `n1σ2(Frob`)X) det(I − σ1(Frob`)X)

which equals

det(I − σ2(Frob`)(`
n1X)) det(I − σ1(Frob`)X) = Fφ2,`(`

n1X)Fφ1,`(X) = Fφ,`(X).

Hence, φ is attached to ρ. �
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6. The Hecke action on hfg

Theorem 6.1. Let ∆1 ⊂ SL(n1,Z) and ∆2 ⊂ SL(n2,Z) be lower congruence
subgroups, and set n = n1 +n2. Choose ∆0 so that ∆0,∆1,∆2 is a lower compatible
system. Let f be an i-cosharbly ∆1-cocycle and let A be an i-sharbly ∆1-cycle such
that f(A) 6= 0. Let g be a j-cosharbly ∆2-cocycle and let B be a j-sharbly ∆2-

cycle such that g(B) 6= 0. Recall that f̃ and g̃ denote the classes of f and g

modulo coboundaries. Suppose that f̃ and g̃ are simultaneous eigenvectors of the

Hecke operators, with f̃ affording the character φ1 and g̃ affording the character
φ2. Define the (i + j)-cosharbly cocycle h = hfg as in Definition 4.2. Then there
is a Hecke-character φ such that for C = A⊗B†, we have

〈h̃|Tn`,k, C〉 = φ(Tn`,k)〈h̃, C〉,

and φ is Hecke-reducible into (φ1, φ2).

Proof. Let h be as above, and let C = A ⊗ B†. Then C is an (i, n1)-reducible
k-sharbly ∆0-cycle. Define the Hecke character φ by

φ(Tn`,k) =
∑
i+j=k

`(n1−i)jφ1(Tn1

`,i )φ2(Tn2

`,j ).

Now let Tn`,k = ∆0D
n
`,k∆0 be a Hecke operator. We compute

〈h̃|Tn`,k, C〉 = 〈h̃|Tn`,k, C〉.

Writing Tn`,k =
∐
α ∆0s

n
k,α, with each snk,α upper triangular, as in Lemma 5.1,

we recall that the set {snk,α} can be written as

⋃
i+j=k

{(
sn1

i,β M

0 sn2

j,ζ

)}
,

where ∆1D
n1

`,i∆1 =
∐
β ∆1s

n1

i,β , and ∆2D
n2

`,j∆2 =
∐
ζ ∆2s

n2

j,ζ , and M runs through
all matrices that make the displayed matrix one of the coset representatives of Tn`,k.

Recall that for a given pair (sn1

i,β , s
n2

j,ζ) there are `n1−j possible M .
We note that since each snk,α is upper triangular, it preserves the space Wn1 , so

its action on A takes A to an i-sharbly for GL(n).
One computes easily that if

snk,α =

(
sn1

i,β ∗
0 sn2

j,ζ

)
,

then

snk,αC = sn1

i,βA⊗ s
n
k,α(B†),
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where we note that snk,αB† is a lift of sn2

j,ζB. Applying Theorem 4.7, we find that

〈h|Tn`,k, C〉 = 〈h, Tn`,kC〉

=
∑
α

〈h, snk,αC〉

=
∑
i+j=k

`(n1−i)j
∑
β

∑
ζ

〈f, sn1

i,βA〉〈g, s
n2

j,ζB〉

=
∑
i+j=k

`(n1−i)j〈f, T`,iA〉〈g, T`,jB〉

=
∑
i+j=k

`(n1−i)j〈f |T`,i, A〉〈g|T`,j , B〉

=
∑
i+j=k

`(n1−i)jφ1(T`,i)φ2(T`,j)〈f,A〉〈g,B〉

=
∑
i+j=k

`(n1−i)jφ1(Tn1

`,i )φ2(Tn2

`,j )〈h,C〉

= 〈φ(Tn`,k)h,C〉.

The theorem follows. �

We now show that the previous theorem suffices to prove that there is a k-
cosharbly cocycle that, modulo coboundaries, is an eigenvector of all the Hecke
operators affording the Hecke character φ defined above.

Lemma 6.2. Let K be a field, H a commutative K-algebra, and A a left H-
module. Define the right H-module structure on A∨ by 〈µ|T, a〉 = 〈µ, Ta〉, for all
µ ∈ A∨, a ∈ A, T ∈ H.

Let χ : H → K be a character and suppose that there are nonzero elements
µ0 ∈ A∨ and a0 ∈ A such that 〈µ0|T, a0〉 = χ(T )〈µ0, a0〉 for every T ∈ H. Then
for every x in the cyclic submodule Ha0 of A,

〈µ0|T, x〉 = χ(T )〈µ0, x〉.

Proof. It suffices to prove the displayed formula when x = T ′a0 for some T ′ ∈ H.
Then

〈µ0|T, T ′a0〉 = 〈µ0|T ′T, a0〉
= χ(T ′T )〈µ0, a0〉
= χ(T )χ(T ′)〈µ0, a0〉
= χ(T )〈µ0|T ′, a0〉
= χ(T )〈µ0, T

′a0〉.

�

Corollary 6.3. Under the conditions of the lemma, if in addition A is finite-
dimensional over K, then A and A∨ each contain an H-eigenvector with system of
eigenvalues given by the character χ.

Proof. The displayed formula shows that the restriction µ0|Ha0 is an H-eigenvector
in (Ha0)∨ with system of eigenvalues given by the character χ. The canonical
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surjective projection A∨ → (Ha0)∨ is a map of H-modules, so the second asser-
tion follows from finite-dimensionality and Jordan canonical form. Then the first
assertion follows by taking the transpose of the Jordan canonical forms. �

7. Application

Theorem 7.1. Let K be a field of characteristic greater than n1 + n2 + 1 or of
characteristic 0. Let ∆0,∆1,∆2 be a lower compatible system of groups inside
SL(n,Z), SL(n1,Z), and SL(n2,Z), respectively. Assume that Hi(∆1,K) has a
Hecke eigenvector affording the Hecke character φ1, and that Hj(∆2,K) has a
Hecke eigenvector affording the Hecke character φ2. Then Hn1n2+i+j(∆0,K) has
a Hecke eigenvector affording the character φ that is Hecke reducible into (φ1, φ2).

Remark. Note that the “top dimension” for cohomology of subgroups of SL(n,Z) is
n(n−1)/2. In order for Theorem 7.1 to make sense, it is necessary that n1n2+i+j ≤
(n1 + n2)(n1 + n2 − 1)/2 whenever i ≤ n1(n1 − 1)/2 and j ≤ n2(n2 − 1)/2. Since

(n1 + n2)(n1 + n2 − 1)

2
− n1n2 =

n1(n1 − 1)

2
+
n2(n2 − 1)

2
≥ i+ j

this will be true. We remark that this also implies that “top-dimensional” eigen-
vectors combine into “top-dimensional” eigenvectors.

Proof. By Borel-Serre duality,

Hn1n2i+j(∆0,K) ∼= H(n1+n2)(n1+n2−1)/2−n1n2−i−j(∆0,St)

= Hn1(n1−1)/2−i+n2(n2−1)/2−j(∆0,St).

By assumption, Hi(∆1,K) ∼= Hn1(n1−1)/2−i(∆1,St) has a Hecke eigenvector ṽ af-

fording the character φ1. Similarly Hj(∆2,K) ∼= Hn2(n2−1)/2−j(∆2,St) has a Hecke
eigenvector w̃ affording the character φ2. By duality, there is a nonzero cosharbly
∆1-cocycle f and a nonzero ∆2-cocycle g such that f̃ and g̃ afford the characters
φ1 and φ2, respectively. Then Theorem 6.1 combined with Corollary 6.3 yields a
cosharbly ∆0-cocycle representing an element inHn1(n1−1)/2−i+n2(n2−1)/2−j(∆0,St)∨

affording the character φ = (φ1, φ2). Hence, there is also a nonzero sharbly ∆0-cycle
x with

x̃ ∈ Hn1(n1−1)/2−i+n2(n2−1)/2−j(∆0,St)

affording the character φ. By Borel-Serre duality, using the fact that

(n1 + n2)(n1 + n2 − 1)

2
− n1(n1 − 1)

2
− n2(n2 − 1)

2
= n1n2

we see that there is a Hecke eigenvector inHn1n2+i+j(∆0,K) affording the character
φ. �

Theorem 7.2. Let F be a finite field of characteristic greater than n1 + n2 + 1,
and for i = 1, 2 let ∆i be a lower congruence subgroup of SL(ni,Z). If ρi : GQ →
GL(n,F) fits Hi(∆i,F), then ρ1 ⊕ ωn1ρ2 fits Hn1n2+i+j(∆0,F), where ∆0,∆1,∆2

is a lower compatible system.

Proof. This follows immediately from Theorem 7.1 and Corollary 5.4. �
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We can use induction to prove a theorem for arbitrarily many Galois represen-
tations fitting cohomology groups. To state the theorem, it is convenient to define
the second elementary symmetric polynomial in t variables,

st(x1, . . . , xt) =
∑

1≤i<j≤t

xixj .

Theorem 7.3. Let F be a finite field with characteristic greater than n1 + n2 + 1.
For 1 ≤ i ≤ t, let ∆i ⊆ SL(ni,Z) be lower congruence subgroups, and assume that
there is a Galois representation ρi : GQ → GL(ni, F ) fitting Hki(∆i, F ). Choose
∆0 so that ∆0,∆1, . . . ,∆t is a lower compatible system. Set

mj =

j−1∑
i=1

ni.

Then the Galois representation

ρ = ρ1 ⊕ ωm2ρ2 ⊕ · · · ⊕ ωmtρt

fits
Hk(∆0, F ),

where k = st(n1, · · · , nt) + k1 + · · ·+ kt.

Proof. This follows easily from Theorem 7.2 by induction, using the fact that

n1(n2 + · · ·+ nt) + st−1(n2, . . . , nt) = st(n1, n2, . . . , nt).

�

8. Examples

Throughout this section, let F be a finite field of sufficiently large characteristic
p.

Example 8.1. Let ρ1 : GQ → GL(n1,F) and ρ2 : GQ → GL(n2,F) be Galois

representations fitting Hn1(n1−1)/2(∆1,F) and Hn2(n2−1)/2(∆2,F), respectively (so
both representations are attached to eigenclasses in the top-dimensional cohomol-
ogy). Assume that ∆0,∆1,∆2 is a lower compatible system. Then ρ1 ⊕ ωn1ρ2 fits
Hn(n−1)/2(∆0,F), so it is attached to a top-dimensional cohomology class.

This example would apply to two-dimensional odd irreducible Galois represen-
tations ρ1 and ρ2 with Serre weight 2 and trivial nebentype that are defined over
F. By Serre’s conjecture they would be attached to cohomology eigenclasses in
H1(Γ0(Ni),F) where Ni is the Serre level of ρi. Then ρ2⊕ω2ρ1 would be attached
to a cohomology class in H6(Γ00(N1, N2),F), where Γ00(N1, N2) ⊂ SL(4,Z) is de-
fined so that the triple Γ00(N1, N2),Γ0(N1),Γ0(N2) is a lower compatible system.

Example 8.2. Let ρ1 : GQ → GL(3,F) and ρ2 : GQ → GL(3,F) be irreducible
Galois representations, each attached to a cohomology eigenclass in H3(Γ0(Ni),F)
(computational examples of such representations may be found in [13]). Define
Γ00(N1, N2) ⊂ SL(6,Z) in such a way that the triple Γ00(N1, N2),Γ0(N1),Γ0(N2)
is a lower compatible system. As described in [10], by Lefschetz duality, each ρi
must also be attached to a cohomology eigenclass inH2(Γ0(Ni),F). Hence, applying
Theorem 7.2 multiple times, we find that ρ1 ⊕ ω3ρ2 is attached to eigenclasses in
Hk(Γ00(N1, N2),F) for k = 32 +3+3 = 15, k = 32 +3+2 = 14, and k = 32 +2+2 =
13.
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Example 8.3. In [6, 7, 8], examples are given of Hecke eigenclasses in cohomology
groups of the form H5(Γ0(4, N),C) whose systems of Hecke eigenvalues, reduced
modulo p will be attached to Galois representations ρ : GQ → GL(4,F). Let-
ting ρ1 and ρ2 be two such representations, with levels N1 and N2, and defining
Γ00(N1, N2) ⊂ SL(8,Z) so that the triple Γ00(N1, N2),Γ0(N1),Γ0(N2) is a lower
compatible system, Theorem 7.2 demonstrates the existence of a cohomology eigen-
class in

H26(Γ00(N1, N2),C)

whose system of Hecke eigenvalues, reduced modulo p, will have the eight-dimensional
Galois representation ρ1⊕ω4ρ2 attached. Note that in this case, the top degree for
the cohomology of congruence subgroups of SL(8) is 28.

In all of these examples, if we assume that the “predicted weights” of the original
Galois representations (as defined in [5]) are all the trivial coefficient module F, then
a predicted weight of the Galois representation constructed as a direct sum can also
be seen to be F, so that the construction in Theorem 7.2 is in accordance with the
weight prediction of the main conjecture of [5]. As mentioned earlier, however, the
prediction made for the level in [5] does not match, because the groups Γ00(N1, N2)
are not of the form considered in [5].
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